Weekly Exercises 4

Room: 02.09.023
Tuesday, 17.11.2015, 14:15-15:45
Submission deadline: Tuesday, 17.11.2015, 11:15, Room 02.09.023

Linear Programming

Exercise 1 (5 Points). Consider the following network $G=(V, E, c, s, t)$:

The numbers on the edges indicate the edge capacities and $N \in \mathbb{N}, N>1$.
a) Write down the standard form of the corresponding max-flow problem's linear program. Get rid of variable z in order to transform the constraint matrix into a matrix of maximal rank.
Hint: You can remove two rows of the divergence matrix and move the divergence of node s or t into the objective.
b) Solve the linear program with the help of the simplex algorithm. Write down the simplex tableau and draw the corresponding flow at each iteration.

Exercise 2 (4 Points). Consider the following linear program:

$$
\begin{array}{ll}
\max _{x \in \mathbb{R}^{2}} & 1 x_{1}+4 x_{2} \\
\text { s.t. } & \left(\begin{array}{cc}
-1 & -1 \\
1 & -3 \\
1 & 1 \\
1 & 2 \\
-2 & 1
\end{array}\right) x \leq\left(\begin{array}{c}
-3 \\
-1 \\
7 \\
10 \\
0
\end{array}\right) \\
& x \geq 0 .
\end{array}
$$

a) Bring the linear program into standard form.
b) Compute a feasible basic solution of the LP using the method described in the lecture (Fundamental Theorem of $L P$) by starting at the feasible point $x_{0}=\binom{3}{2}$.
c) Find an optimal basic solution. Is the optimal basic solution unique?
d) Can you find the optimum by drawing into the figure below?

Exercise 3 (2 Points). Let $n \geq 2,0<\varepsilon<\frac{1}{2}$. Consider the following linear program from the lecture:

$$
\begin{array}{ll}
& \max _{x \in \mathbb{R}^{n}} x_{n}, \\
\text { subject to: } & 0 \leq x_{1} \leq 1, \\
& \varepsilon x_{i} \leq x_{i+1} \leq 1-\varepsilon x_{i}, \quad \text { for all } i=1, \ldots, n-1 .
\end{array}
$$

a) Draw the feasible set for $n=2, \varepsilon=\frac{1}{3}$.
b) For $n=3, \varepsilon=\frac{1}{3}$, derive an order of basic feasible solutions with strictly increasing energy where each basic feasible solution is visited once.

Solution.

a)

b) There are eight vertices $\left(v_{1}, \ldots, v_{8}\right)$ which are lying on a "cube". The last coordinate denotes the energy:

$$
\begin{aligned}
& v_{1}=(0,0,0) \simeq(0,0,0), \\
& v_{2}=(0,0,1) \simeq(0,0,1), \\
& v_{3}=\left(0,1, \frac{3}{9}\right) \simeq(0,1,0), \\
& v_{4}=\left(0,1, \frac{6}{9}\right) \simeq(0,1,1), \\
& v_{5}=\left(1, \frac{1}{3}, \frac{1}{9}\right) \simeq(1,0,0), \\
& v_{6}=\left(1, \frac{1}{3}, \frac{8}{9}\right) \simeq(1,0,1), \\
& v_{7}=\left(1, \frac{2}{3}, \frac{2}{9}\right) \simeq(1,1,0), \\
& v_{8}=\left(1, \frac{2}{3}, \frac{7}{9}\right) \simeq(1,1,1) .
\end{aligned}
$$

The path $\left(v_{1}, v_{5}, v_{7}, v_{3}, v_{4}, v_{8}, v_{6}\right)$ leads to an increasing energy. This path exists, since only 1 coordinate is changing in each step and thus is a valid path on the cube.

Exercise 4 (4 Points). Let $A \in\{-1,0,1\}^{m \times n}$ be a matrix with two different nonzero entries in each row.
a) Show that A is totally unimodular.

Hint: Perform induction over the size of square submatrices $B_{k} \in\{-1,0,1\}^{k \times k}$ to show that $\operatorname{det} B_{k} \in\{-1,0,1\}$.
b) Use the previous result to show that the gradient Grad: $\mathbb{R}^{|V|} \rightarrow \mathbb{R}^{|E|}$ is totally unimodular.
c) Argue that the divergence div : $\mathbb{R}^{|E|} \rightarrow \mathbb{R}^{|V|}$ is also totally unimodular.

Solution.

a) Let $B \in \mathbb{R}^{k \times k}$ be a square submatrix of A. We prove that $\operatorname{det} B \in\{-1,0,1\}$ using induction over k. The base case $k=1$ immediately follows from the definition of A. Now let $k>1$.

- If B has a complete zero row, then $\operatorname{det} B=0$.
- If B has a row with exactly one non-zero element, then

$$
\operatorname{det} B= \pm \operatorname{det}\left(\begin{array}{cc}
\pm 1 & 0 \\
b & B^{\prime}
\end{array}\right)= \pm \operatorname{det} B^{\prime}
$$

and $\operatorname{det} B^{\prime} \in\{-1,0,1\}$ by induction hypothesis

- B has in every row exactly one +1 and one -1 . Adding up all the columns yields the zero vector. Since adding two columns does not change the determinant, we have $\operatorname{det} B=0$.
b) As the gradient is precisely a matrix with exactly one +1 and one -1 in each row, the claim follows from a).
c) Since div $=-\operatorname{Grad}^{\top}$ and the transpose of a totally unimodular matrix is totally unimodular again, and as $\operatorname{det} A= \pm \operatorname{det}-A$ we know that the divergence is also totally unimodular.

Programming

(0 Points)
Complete the programming assignment from last week.

