Combinatorial Optimization in Computer Vision
Computer Vision Group
Lecture: F. R. Schmidt and C. Domokos
Institut für Informatik
Exercises: T. Möllenhoff and T. Windheuser Technische Universität München
Winter Semester 2015/2016

Weekly Exercises 5

Room: 02.09.023
Tuesday, 24.11.2015, 14:15-15:45
Submission deadline: Tuesday, 24.11.2015, 11:15, Room 02.09.023

Probabilistic Inference

Exercise 1 (Inference on chains, 2 Points). Consider the following factor graph, which is a chain:

The joint distribution can be written in the form

$$
p(\mathbf{y})=\frac{1}{Z} F_{1}\left(y_{1}, y_{2}\right) F_{2}\left(y_{2}, y_{3}\right) \cdot \ldots \cdot F_{n-1}\left(y_{n-1}, y_{n}\right)
$$

where $Z=\sum_{\mathbf{y}} \prod_{i=1}^{n-1} F_{i}\left(y_{i}, y_{i+1}\right)$ denotes the partition function. Show that the marginal distribution $p\left(y_{i}\right)$ decomposes into the product of two factors:

$$
p\left(y_{i}\right)=\frac{1}{Z} r_{F_{i} \rightarrow y_{i}}\left(y_{i}\right) r_{F_{i+1} \rightarrow y_{i}}\left(y_{i}\right)
$$

Exercise 2 (Max-sum algorithm, 3 Points). Execute the max-sum algorithm to find a maximizing configuration $\mathbf{y} \in\{0,1,2\}^{4}$ of the following factor graph:

The factors are defined through the following:

$$
\begin{align*}
& F_{x}\left(y_{i}, y_{j}\right)=\exp \left(-\left(\left|y_{i}-y_{j}\right|+\left(c_{x}-y_{i}\right)^{2}\right)\right), x \in\{1,2,3\}, \\
& c_{1}=0, c_{2}=1, c_{3}=1, c_{4}=2 \tag{1}\\
& F_{4}\left(y_{4}\right)=\exp \left(-\left(c_{4}-y_{4}\right)^{2}\right)
\end{align*}
$$

Show the intermediate steps in detail. Pick y_{4} as the root node.

Roof Duality

Exercise 3 (Roof duality, 5 Points). Consider the following pseudo-Boolean energy function $f: \mathbb{B}^{5} \rightarrow \mathbb{R}$:

$$
f\left(x_{1}, \ldots, x_{5}\right)=10-4 x_{1}-4 x_{3}-2 x_{4}+4 x_{1} x_{2}-2 x_{2} x_{3}+4 x_{3} x_{4}-2 x_{4} x_{5} .
$$

a) Show that f is not submodular.
b) Find the global minimizer $\widehat{x} \in \mathbb{B}^{5}$ of f using roof duality.
c) Show that f is submodular with respect to $x_{1}, \bar{x}_{2}, \bar{x}_{3}, x_{4}, x_{5}$.

Programming

(2 weeks time, 10 Points)

Presentation of the programming exercise will be on Tuesday, December 1st.
Exercise 4 (Texture Denoising, 10 Points).
Let $\mathcal{I}: \Omega \rightarrow[0,1]$, where $\Omega=\{0, \ldots, W-1\} \times\{0, \ldots, H-1\}, W, H \in \mathbb{N}$, be a binary image with additive Gaussian noise. We would like to recover the original binary image \mathcal{I}_{0} by removing the noise.

image \mathcal{I} with noise

original image \mathcal{I}_{0}

Fortunately, we know that the original image contains mostly vertical stripes and only black or white pixels, i.e. $\mathcal{I}_{0}: \Omega \rightarrow \mathbb{B}$. Therefore we can describe the denoised image as the optimizer of the following energy function:

$$
\begin{equation*}
E(X)=\lambda \sum_{i, j} f_{i, j}(X(i, j))+\sum_{i, j} c_{\mathrm{h}}(X(i, j), X(i+1, j))+c_{\mathrm{v}}(X(i, j), X(i, j+1)), \tag{2}
\end{equation*}
$$

where $X: \Omega \rightarrow \mathbb{B}$ is a binary image and $\lambda>0$ is a positive scalar parameter. The functions $f_{i, j}: \mathbb{B} \rightarrow \mathbb{R}$ encode the data given by image \mathcal{I} and are defined by

$$
\begin{equation*}
f_{i, j}(x)=(\mathcal{I}(i, j)-x)^{2} . \tag{3}
\end{equation*}
$$

The pairwise regularizers $c_{\mathrm{h}}, c_{\mathrm{v}}: \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{R}$ encode the knowledge about the stripe pattern of the original image. The horizontal term c_{h} prefers neighboring pixels that have different intensities:

$$
c_{\mathrm{h}}\left(x_{1}, x_{2}\right)=1-\left|x_{1}-x_{2}\right| .
$$

The vertical term c_{v} prefers neighboring pixels that have the same intensities:

$$
c_{\mathrm{v}}\left(x_{1}, x_{2}\right)=\left|x_{1}-x_{2}\right| .
$$

Which energy is submodular? c_{h} or c_{v} ?
Write a program that tries to find the optimizer of energy function (2). Since half of the pairwise terms are non-submodular try the following strategies:
a) Remove the non-submodular terms from energy function (2) and use the basic graph-cut algorithm.
b) Use QPBO to improve the result of a) a partial labeling.

You can use the code and the images inside 05_supp.zip from the lecture website as a starting point. The file texturedenoising.cpp already includes the code to load the images and textures and to compute the pairwise energy functions.

The exercise uses a simplified version of the model in Cremers and Grady [1] https://vision.in.tum.de/_media/spezial/bib/cremers_grady_eccv06.pdf.

References

[1] Cremers, D., Grady, L.: Statistical priors for combinatorial optimization: efficient solutions via Graph Cuts. In Leonardis, A., Bischof, H., Pinz, A., eds.: European Conference on Computer Vision (ECCV). Volume 3953 of LNCS., Graz, Austria, Springer (2006) 263-274

