Weekly Exercises 5

Room: 02.09.023
Tuesday, 24.11.2015, 14:15-15:45
Submission deadline: Tuesday, 24.11.2015, 11:15, Room 02.09.023

Probabilistic Inference

(5 Points)
Exercise 1 (Inference on chains, 2 Points). Consider the following factor graph, which is a chain:

The joint distribution can be written in the form

$$
p(\mathbf{y})=\frac{1}{Z} F_{1}\left(y_{1}, y_{2}\right) F_{2}\left(y_{2}, y_{3}\right) \cdot \ldots \cdot F_{n-1}\left(y_{n-1}, y_{n}\right)
$$

where $Z=\sum_{\mathbf{y}} \prod_{i=1}^{n-1} F_{i}\left(y_{i}, y_{i+1}\right)$ denotes the partition function. Show that the marginal distribution $p\left(y_{i}\right)$ decomposes into the product of two factors:

$$
p\left(y_{i}\right)=\frac{1}{Z} r_{F_{i} \rightarrow y_{i}}\left(y_{i}\right) r_{F_{i+1} \rightarrow y_{i}}\left(y_{i}\right) .
$$

Solution. Using the definition of $p\left(y_{i}\right)$ we have:

$$
\begin{align*}
p\left(y_{i}\right) & =\sum_{y_{1}} \ldots \sum_{y_{i-1}} \sum_{y_{i+1}} \ldots \sum_{y_{n}} p(\mathbf{y}) \\
& =\sum_{y_{1}} \ldots \sum_{y_{i-1}} \sum_{y_{i+1}} \ldots \sum_{y_{n}} \frac{1}{Z} F_{1}\left(y_{1}, y_{2}\right) F_{2}\left(y_{2}, y_{3}\right) \cdot \ldots \cdot F_{n-1}\left(y_{n-1}, y_{n}\right) \\
& =\frac{1}{Z} \sum_{y_{1}} \ldots \sum_{y_{i-1}} \sum_{y_{i+1}} \ldots \sum_{y_{n}} F_{1}\left(y_{1}, y_{2}\right) F_{2}\left(y_{2}, y_{3}\right) \cdot \ldots \cdot F_{n-1}\left(y_{n-1}, y_{n}\right) \\
& =\frac{1}{Z}\left[\sum_{y_{i-1}} F_{i-1}\left(y_{i-1}, y_{i}\right) \ldots\left[\sum_{y_{2}} F_{1}\left(y_{2}, y_{3}\right)\left[\sum_{y_{1}} F_{1}\left(y_{1}, y_{2}\right)\right]\right] \ldots\right] . \tag{1}\\
& =\frac{1}{Z} r_{F_{i} \rightarrow y_{i}}\left(y_{i}\right) r_{F_{i+1} \rightarrow y_{i}}\left(y_{i}\right) .
\end{align*}
$$

Exercise 2 (Max-sum algorithm, 3 Points). Execute the max-sum algorithm to find a maximizing configuration $\mathbf{y} \in\{0,1,2\}^{4}$ of the following factor graph:

The factors are defined through the following:

$$
\begin{align*}
& F_{x}\left(y_{i}, y_{j}\right)=\exp \left(-\left(\left|y_{i}-y_{j}\right|+\left(c_{x}-y_{i}\right)^{2}\right)\right), x \in\{1,2,3\} \\
& c_{1}=0, c_{2}=1, c_{3}=1, c_{4}=2 \tag{2}\\
& F_{4}\left(y_{4}\right)=\exp \left(-\left(c_{4}-y_{4}\right)^{2}\right)
\end{align*}
$$

Show the intermediate steps in detail. Pick y_{4} as the root node.
Solution. We consider y_{4} as the root node. Starting with the leaf nodes, we then have the following messages:

$$
\begin{align*}
& r_{F_{4} \rightarrow y_{4}}\left(y_{4}\right)=\log F_{4}\left(y_{4}\right)=-\left(c_{4}-y_{4}\right)^{2}, \tag{3}\\
& q_{y_{1} \rightarrow F_{1}}\left(y_{1}\right)=0, \tag{4}\\
& r_{F_{1} \rightarrow y_{3}}\left(y_{3}\right)=\max _{y_{1}}\left\{\log F_{1}\left(y_{1}, y_{3}\right)+q_{y_{1} \rightarrow F_{1}}\left(y_{1}\right)\right\}, \tag{5}\\
& q_{y_{2} \rightarrow F_{2}}\left(y_{2}\right)=0, \tag{6}\\
& r_{F_{2} \rightarrow y_{3}}\left(y_{3}\right)=\max _{y_{2}}\left\{\log F_{2}\left(y_{2}, y_{3}\right)+q_{y_{2} \rightarrow F_{2}}\left(y_{2}\right)\right\}, \tag{7}\\
& q_{y_{3} \rightarrow F_{3}}\left(y_{3}\right)=r_{F_{1} \rightarrow y_{3}}\left(y_{3}\right)+r_{F_{2} \rightarrow y_{3}}\left(y_{3}\right), \tag{8}\\
& r_{F_{3} \rightarrow y_{4}}\left(y_{4}\right)=\max _{y_{3}}\left\{\log F_{3}\left(y_{3}, y_{4}\right)+q_{y_{3} \rightarrow F_{3}}\left(y_{3}\right)\right\} . \tag{9}
\end{align*}
$$

A quick calculation shows that the messages are given as:

	σ	1	2
$\Gamma_{F_{4} \rightarrow y_{4}}$	-4	-1	0
$r_{F_{1} \rightarrow y_{3}}$	σ	-1	-2
$r_{F_{2} \rightarrow y_{3}}$	-1	0	-1
$q_{y_{3} \rightarrow F_{3}}$	-1	-1	-3
$r_{F_{3} \rightarrow y_{4}}$	-2	-1	-4

Hence, the maximizing energy is given as:

$$
\begin{equation*}
E(\widehat{\mathbf{y}})=\max _{y_{4}}\left\{r_{F_{3} \rightarrow y_{4}}\left(y_{4}\right)+r_{F_{4} \rightarrow y_{4}}\left(y_{4}\right)\right\}=-2 \tag{10}
\end{equation*}
$$

To find a maximizing configuration, we have the following sequence of updates:

$$
\begin{align*}
& \widehat{y}_{4}=\underset{y_{4}}{\operatorname{argmax}}\left\{r_{F_{3} \rightarrow y_{4}}\left(y_{4}\right)+r_{F_{4} \rightarrow y_{4}}\left(y_{4}\right)\right\}=1 . \tag{11}\\
& \widehat{y}_{3}=\underset{y_{3}}{\operatorname{argmax}}\left\{r_{F_{2} \rightarrow y_{3}}\left(y_{3}\right)+r_{F_{1} \rightarrow y_{3}}\left(y_{3}\right)+\log F_{3}\left(y_{3}, 1\right)\right\}=1 . \tag{12}\\
& \widehat{y}_{2}=\underset{y_{2}}{\operatorname{argmax}}\left\{\log F_{2}\left(y_{2}, 1\right)\right\}=1, \tag{13}\\
& \widehat{y}_{1} \in \underset{y_{1}}{\operatorname{argmax}}\left\{\log F_{1}\left(y_{1}, 1\right)\right\}=\{0,1\} . \tag{14}
\end{align*}
$$

Thus, two global maximizers are given by:

$$
\begin{equation*}
\widehat{\mathbf{y}} \in\{(0,1,1,1),(1,1,1,1)\} . \tag{15}
\end{equation*}
$$

Roof Duality

Exercise 3 (Roof duality, 5 Points). Consider the following pseudo-Boolean energy function $f: \mathbb{B}^{5} \rightarrow \mathbb{R}$:

$$
f\left(x_{1}, \ldots, x_{5}\right)=10-4 x_{1}-4 x_{3}-2 x_{4}+4 x_{1} x_{2}-2 x_{2} x_{3}+4 x_{3} x_{4}-2 x_{4} x_{5}
$$

a) Show that f is not submodular.
b) Find the global minimizer $\widehat{x} \in \mathbb{B}^{5}$ of f using roof duality.
c) Show that f is submodular with respect to $x_{1}, \bar{x}_{2}, \bar{x}_{3}, x_{4}, x_{5}$.

Solution.

1. Among others, the second derivative $\frac{\partial^{2} f}{\partial x_{1} x_{2}}=4$ is positive. Hence f is not submodular.
2. First we rewrite the energy as a posiform:

$$
\begin{aligned}
& f\left(x_{1}, \ldots, x_{5}\right)=10-4 x_{1}-4 x_{3}-2 x_{4}+4 x_{1} x_{2}-2 x_{2} x_{3}+4 x_{3} x_{4}-2 x_{4} x_{5} \\
& =10-4\left(1-\bar{x}_{1}\right)-4\left(1-\bar{x}_{3}\right)-2\left(1-\bar{x}_{4}\right)+4 x_{1} x_{2}-2\left(1-\bar{x}_{2}\right) x_{3}+4 x_{3} x_{4}-2\left(1-\bar{x}_{4}\right) x_{5} \\
& =4 \bar{x}_{1}+4 \bar{x}_{3}+2 \bar{x}_{4}+4 x_{1} x_{2}-2\left(1-\bar{x}_{3}\right)+2 \bar{x}_{2} x_{3}+4 x_{3} x_{4}-2\left(1-\bar{x}_{5}\right)+2 \bar{x}_{4} x_{5} \\
& =-4+4 \bar{x}_{1}+6 \bar{x}_{3}+2 \bar{x}_{4}+2 \bar{x}_{5}+4 x_{1} x_{2}+2 \bar{x}_{2} x_{3}+4 x_{3} x_{4}+2 \bar{x}_{4} x_{5} .
\end{aligned}
$$

This can be written with $V=\{0, \overline{0}, 1, \overline{1}, \ldots, 5, \overline{5}\}$ as:

$$
\begin{equation*}
\Phi(x)=C_{0}+\sum_{i, j \in V} C_{i j} x_{i} x_{j} \tag{16}
\end{equation*}
$$

with

$$
\begin{aligned}
& C_{0}=-4, C_{0 \overline{1}}=4, C_{0 \overline{3}}=6, C_{0 \overline{4}}=2, C_{0 \overline{5}}=2, \\
& C_{12}=4, C_{\overline{2} 3}=2, C_{34}=4, C_{\overline{4} 5}=2 .
\end{aligned}
$$

The network associated with (16) is given as the following:

We have the augmenting paths (each with unit flow):

$$
\begin{aligned}
& 0 \rightarrow 4 \rightarrow \overline{3} \rightarrow \overline{0} \\
& 0 \rightarrow 1 \rightarrow \overline{2} \rightarrow \overline{3} \rightarrow \overline{0} \\
& 0 \rightarrow 5 \rightarrow 4 \rightarrow \overline{3} \rightarrow \overline{0} \\
& 0 \rightarrow 3 \rightarrow \overline{4} \rightarrow \overline{0} \\
& 0 \rightarrow 3 \rightarrow \overline{4} \rightarrow \overline{5} \rightarrow \overline{0} \\
& 0 \rightarrow 3 \rightarrow 2 \rightarrow \overline{1} \rightarrow \overline{0} .
\end{aligned}
$$

This yields the following residual network:

Since x_{1} and \bar{x}_{2} are connected to the source we have $x_{1}=1$ and $x_{2}=0$. Furthermore the residual network corresponds to the posiform

$$
\Phi^{\prime}(x)=2 \bar{x}_{1}+2 x_{1} x_{2}+2 \bar{x}_{1} \bar{x}_{2}+2 x_{2} \bar{x}_{3}+4 \bar{x}_{3} \bar{x}_{4}+2 x_{4} \bar{x}_{5}
$$

Substituting the above into the posiform finally yields:

$$
4 \bar{x}_{3} \bar{x}_{4}+2 x_{4} \bar{x}_{5}
$$

It can be seen that a minimizing configuration is given as $x_{1}=1, x_{2}=0$, $x_{3}=1, x_{4}=1, x_{5}=1$, giving an energy of 2 when substituted in the original energy (16).
3. To check submodularity, it is enough to consider the pairwise terms:

$$
\begin{aligned}
f_{\text {pairwise }}\left(x_{1}, \ldots, x_{5}\right) & =4 x_{1} x_{2}-2 x_{2} x_{3}+4 x_{3} x_{4}-2 x_{4} x_{5} \\
& =4 x_{1}\left(1-\bar{x}_{2}\right)-2\left(1-\bar{x}_{2}\right)\left(1-\bar{x}_{3}\right)+4\left(1-\bar{x}_{3}\right) x_{4}-2 x_{4} x_{5} \\
& =4 x_{1}-4 x_{1} \bar{x}_{2}-2\left(1-\bar{x}_{3}-\bar{x}_{2}+\bar{x}_{2} \bar{x}_{3}\right)+4 x_{4}-4 \bar{x}_{3} x_{4}-2 x_{4} x_{5} \\
& =\underbrace{\cdots}_{\text {unary terms }}-4 x_{1} \bar{x}_{2}-2 \bar{x}_{2} \bar{x}_{3}-4 \bar{x}_{3} x_{4}-2 x_{4} x_{5} .
\end{aligned}
$$

It can be seen that all second derivatives are negative, thus f is submodular with respect to $x_{1}, \bar{x}_{2}, \bar{x}_{3}, x_{4}, x_{5}$.

Programming

(2 weeks time, 10 Points)

Presentation of the programming exercise will be on Tuesday, December 1st.
Exercise 4 (Texture Denoising, 10 Points).
Let $\mathcal{I}: \Omega \rightarrow[0,1]$, where $\Omega=\{0, \ldots, W-1\} \times\{0, \ldots, H-1\}, W, H \in \mathbb{N}$, be a binary image with additive Gaussian noise. We would like to recover the original binary image \mathcal{I}_{0} by removing the noise.

image \mathcal{I} with noise

original image \mathcal{I}_{0}

Fortunately, we know that the original image contains mostly vertical stripes and only black or white pixels, i.e. $\mathcal{I}_{0}: \Omega \rightarrow \mathbb{B}$. Therefore, we can describe the denoised image as the optimizer of the following energy function:

$$
\begin{equation*}
E(X)=\lambda \sum_{i, j} f_{i, j}(X(i, j))+\sum_{i, j} c_{\mathrm{h}}(X(i, j), X(i+1, j))+c_{\mathrm{v}}(X(i, j), X(i, j+1)), \tag{17}
\end{equation*}
$$

where $X: \Omega \rightarrow \mathbb{B}$ is a binary image and $\lambda>0$ is a positive scalar parameter. The functions $f_{i, j}: \mathbb{B} \rightarrow \mathbb{R}$ encode the data given by image \mathcal{I} and are defined by

$$
\begin{equation*}
f_{i, j}(x)=(\mathcal{I}(i, j)-x)^{2} . \tag{18}
\end{equation*}
$$

The pairwise regularizers $c_{\mathrm{h}}, c_{\mathrm{v}}: \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{R}$ encode the knowledge about the stripe pattern of the original image. The horizontal term c_{h} prefers neighboring pixels that have different intensities:

$$
c_{\mathrm{h}}\left(x_{1}, x_{2}\right)=1-\left|x_{1}-x_{2}\right| .
$$

The vertical term c_{v} prefers neighboring pixels that have the same intensities:

$$
c_{\mathrm{v}}\left(x_{1}, x_{2}\right)=\left|x_{1}-x_{2}\right| .
$$

Which energy is submodular? c_{h} or c_{v} ?
Write a program that tries to find the optimizer of energy function (17). Since half of the pairwise terms are non-submodular try the following strategies:
a) Remove the non-submodular terms from energy function (17) and use the basic graph-cut algorithm.
b) Use QPBO to improve the result of a).

You can use the code and the images inside 05_supp.zip from the lecture website as a starting point. The file texturedenoising.cpp already includes the code to load the images and textures and to compute the pairwise energy functions.

The exercise uses a simplified version of the model in Cremers and Grady [1] https://vision.in.tum.de/_media/spezial/bib/cremers_grady_eccv06.pdf.

References

[1] Cremers, D., Grady, L.: Statistical priors for combinatorial optimization: efficient solutions via Graph Cuts. In Leonardis, A., Bischof, H., Pinz, A., eds.: European Conference on Computer Vision (ECCV). Volume 3953 of LNCS., Graz, Austria, Springer (2006) 263-274

