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Probabilistic Inference (5 Points)
Exercise 1 (Inference on chains, 2 Points). Consider the following factor graph,
which is a chain:
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The joint distribution can be written in the form

p(y) =
1

Z
F1(y1, y2)F2(y2, y3) · . . . · Fn−1(yn−1, yn),

where Z =
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i=1 Fi(yi, yi+1) denotes the partition function. Show that the

marginal distribution p(yi) decomposes into the product of two factors:
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rFi→yi(yi)rFi+1→yi(yi).
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Exercise 2 (Max-sum algorithm, 3 Points). Execute the max-sum algorithm to find
a maximizing configuration y ∈ {0, 1, 2}4 of the following factor graph:
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The factors are defined through the following:

Fx(yi, yj) = exp
(
−(|yi − yj|+ (cx − yi)2)

)
, x ∈ {1, 2, 3},

c1 = 0, c2 = 1, c3 = 1, c4 = 2,

F4(y4) = exp(−(c4 − y4)2).

(2)

Show the intermediate steps in detail. Pick y4 as the root node.

Solution. We consider y4 as the root node. Starting with the leaf nodes, we then
have the following messages:

rF4→y4(y4) = logF4(y4) = −(c4 − y4)2, (3)
qy1→F1(y1) = 0, (4)
rF1→y3(y3) = max

y1
{logF1(y1, y3) + qy1→F1(y1)}, (5)

qy2→F2(y2) = 0, (6)
rF2→y3(y3) = max

y2
{logF2(y2, y3) + qy2→F2(y2)}, (7)

qy3→F3(y3) = rF1→y3(y3) + rF2→y3(y3), (8)
rF3→y4(y4) = max

y3
{logF3(y3, y4) + qy3→F3(y3)}. (9)

A quick calculation shows that the messages are given as:

Hence, the maximizing energy is given as:

E(ŷ) = max
y4
{rF3→y4(y4) + rF4→y4(y4)} = −2. (10)
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To find a maximizing configuration, we have the following sequence of updates:

ŷ4 = argmax
y4

{rF3→y4(y4) + rF4→y4(y4)} = 1. (11)

ŷ3 = argmax
y3

{rF2→y3(y3) + rF1→y3(y3) + logF3(y3, 1)} = 1. (12)

ŷ2 = argmax
y2

{logF2(y2, 1)} = 1, (13)

ŷ1 ∈ argmax
y1

{logF1(y1, 1)} = {0, 1}. (14)

Thus, two global maximizers are given by:

ŷ ∈ {(0, 1, 1, 1), (1, 1, 1, 1)}. (15)

Roof Duality (5 Points)
Exercise 3 (Roof duality, 5 Points). Consider the following pseudo-Boolean energy
function f : B5 → R:

f(x1, . . . , x5) = 10− 4x1 − 4x3 − 2x4 + 4x1x2 − 2x2x3 + 4x3x4 − 2x4x5.

a) Show that f is not submodular.

b) Find the global minimizer x̂ ∈ B5 of f using roof duality.

c) Show that f is submodular with respect to x1, x̄2, x̄3, x4, x5.

Solution.

1. Among others, the second derivative ∂2f
∂x1x2

= 4 is positive. Hence f is not
submodular.

2. First we rewrite the energy as a posiform:

f(x1, . . . , x5) = 10− 4x1 − 4x3 − 2x4 + 4x1x2 − 2x2x3 + 4x3x4 − 2x4x5

= 10− 4(1− x̄1)− 4(1− x̄3)− 2(1− x̄4) + 4x1x2 − 2(1− x̄2)x3 + 4x3x4 − 2(1− x̄4)x5

= 4x̄1 + 4x̄3 + 2x̄4 + 4x1x2 − 2(1− x̄3) + 2x̄2x3 + 4x3x4 − 2(1− x̄5) + 2x̄4x5

= −4 + 4x̄1 + 6x̄3 + 2x̄4 + 2x̄5 + 4x1x2 + 2x̄2x3 + 4x3x4 + 2x̄4x5.

This can be written with V = {0, 0̄, 1, 1̄, . . . , 5, 5̄} as:

Φ(x) = C0 +
∑
i,j∈V

Cijxixj, (16)

with

C0 = −4, C01̄ = 4, C03̄ = 6, C04̄ = 2, C05̄ = 2,

C12 = 4, C2̄3 = 2, C34 = 4, C4̄5 = 2.

The network associated with (16) is given as the following:
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We have the augmenting paths (each with unit flow):

0→ 4→ 3̄→ 0̄

0→ 1→ 2̄→ 3̄→ 0̄

0→ 5→ 4→ 3̄→ 0̄

0→ 3→ 4̄→ 0̄

0→ 3→ 4̄→ 5̄→ 0̄

0→ 3→ 2→ 1̄→ 0̄.

This yields the following residual network:
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Since x1 and x̄2 are connected to the source we have x1 = 1 and x2 = 0.
Furthermore the residual network corresponds to the posiform

Φ′(x) = 2x̄1 + 2x1x2 + 2x̄1x̄2 + 2x2x̄3 + 4x̄3x̄4 + 2x4x̄5

Substituting the above into the posiform finally yields:

4x̄3x̄4 + 2x4x̄5

It can be seen that a minimizing configuration is given as x1 = 1, x2 = 0,
x3 = 1, x4 = 1, x5 = 1, giving an energy of 2 when substituted in the original
energy (16).

3. To check submodularity, it is enough to consider the pairwise terms:

fpairwise(x1, . . . , x5) = 4x1x2 − 2x2x3 + 4x3x4 − 2x4x5

= 4x1(1− x̄2)− 2(1− x̄2)(1− x̄3) + 4(1− x̄3)x4 − 2x4x5

= 4x1 − 4x1x̄2 − 2(1− x̄3 − x̄2 + x̄2x̄3) + 4x4 − 4x̄3x4 − 2x4x5

= . . .︸︷︷︸
unary terms

−4x1x̄2 − 2x̄2x̄3 − 4x̄3x4 − 2x4x5.

It can be seen that all second derivatives are negative, thus f is submodular
with respect to x1, x̄2, x̄3, x4, x5.
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Programming (2 weeks time, 10 Points)
Presentation of the programming exercise will be on Tuesday, December 1st.

Exercise 4 (Texture Denoising, 10 Points).
Let I : Ω → [0, 1], where Ω = {0, . . . ,W − 1} × {0, . . . , H − 1},W,H ∈ N, be a
binary image with additive Gaussian noise. We would like to recover the original
binary image I0 by removing the noise.

image I with noise original image I0

Fortunately, we know that the original image contains mostly vertical stripes and
only black or white pixels, i.e. I0 : Ω→ B. Therefore, we can describe the denoised
image as the optimizer of the following energy function:

E(X) = λ
∑
i,j

fi,j(X(i, j)) +
∑
i,j

ch(X(i, j), X(i+ 1, j)) + cv(X(i, j), X(i, j + 1)),

(17)

where X : Ω → B is a binary image and λ > 0 is a positive scalar parameter. The
functions fi,j : B→ R encode the data given by image I and are defined by

fi,j(x) = (I(i, j)− x)2. (18)

The pairwise regularizers ch, cv : B×B→ R encode the knowledge about the stripe
pattern of the original image. The horizontal term ch prefers neighboring pixels that
have different intensities:

ch(x1, x2) = 1− |x1 − x2|.

The vertical term cv prefers neighboring pixels that have the same intensities:

cv(x1, x2) = |x1 − x2|.

Which energy is submodular? ch or cv?
Write a program that tries to find the optimizer of energy function (17). Since

half of the pairwise terms are non-submodular try the following strategies:
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a) Remove the non-submodular terms from energy function (17) and use the basic
graph-cut algorithm.

b) Use QPBO to improve the result of a).

You can use the code and the images inside 05_supp.zip from the lecture website
as a starting point. The file texturedenoising.cpp already includes the code to
load the images and textures and to compute the pairwise energy functions.

The exercise uses a simplified version of the model in Cremers and Grady [1]
https://vision.in.tum.de/_media/spezial/bib/cremers_grady_eccv06.pdf.
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