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Mean Field Inference (10 Points)

Exercise 1 (4 Points). Assume a graphical model G = (V, ) and consider a fac-
torized distribution in the following form:

a() = [ [ a(w)- (1)
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a) Show that the marginal distribution of a factor F'is given by:
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b) Show that the entropy decomposes as:

H(q) = Z Hi(q:),
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where
Hi(q) = — Z Z q:(vi) 1og ¢i(yi).-
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Solution.

a) First note that:
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Similarly, one computes:
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b)
H(q) =~ q(y)logq(y) = —Ellog q(y)] (7)
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Exercise 2 (6 Points). In the lecture we introduced Dk, (¢(y)||p(y | z)) for some
“simple” distribution ¢ as a tractable approximation of p(y | ). We now assume
that g(y) follows the factorization (1).

a) Show that the reverse KL-divergence Dky(p(y | x)||¢(y)) can be written as

Dxr(p(y | 2)|lq(y) Zp vz (Z log qi(yi)> + const, (10)
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where the constant is meant with respect to q(y).
b) Using the technique of Lagrange multipliers, show that minimizing (10) with

respect to ¢;(y;) while holding all other variables fixed yields the corresponding
marginal distribution of p:

q; (y;) = argmin Dy (p(y | 2)llq(y)) = p(yi | ).
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Solution.
a)
Dxr(p(y | 2)llq(y) Zpy\xlog (|))
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b) Since we are optimizing over ¢;(y;) we can absorb all the other terms g; for i # j
into the constant term:
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=— Z log ¢;(y;)p(y; | x) + const.
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Introducing a Lagrange multiplier A to ensure that ¢;(y;) sums up to one yields
the Lagrangian

L(g; M) =Y plyile)logq;(y;) + A q;(y;) — 1)
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Setting the derivative of the Lagrangian £(g;, \) w.r.t to ¢; to zero yields:

Hence Ag;(y;) = p(y;). Summing both sides over all possible y; yields:
A= ply o) =1,
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and thus
4;(y;) = pi(y; | ).



Programming (10 Points)

Exercise 3 (Parametric Max Flow, 10 Points).
In this programming exercise we are interested in finding the breakpoints of the
energy function
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from Exercise Sheet 3. The file @6_supp.zip from the lecture website contains the
code to find the minimizer x* = arg min, F(X, ) for a given A > 0.

Extend the program such that it finds all breakpoints of energy function (11),
given some image. Afterwards display them, sorted by increasing .



