Combinatorial Optimization in Computer Vision Lecture: F. R. Schmidt and C. Domokos Exercises: T. Möllenhoff and T. Windheuser Winter Semester 2015/2016 Computer Vision Institut für Informatik

Weekly Exercises 7

Room: 02.09.023 Tuesday, 09.12.2015, 14:15-15:45 Submission deadline: Tuesday, 09.12.2015, 11:15, Room 02.09.023

Convexity

(2 Points)

Exercise 1 (2 Points). Show that the following functions are convex:

a) $f : \mathbb{R} \to \mathbb{R}, x \mapsto |x|^p, p \in [1, \infty).$ c) $f : \mathbb{R}_{\geq 0} \to \mathbb{R}, x \mapsto x \log(x).$ b) $f : \mathbb{R} \to \mathbb{R}, x \mapsto \log(1 + \exp(x)).$ d) $f : \mathbb{R} \to \mathbb{R}, x \mapsto \max(0, x).$

Multi-Label Problems and Submodularity (8 Points)

Let $\mathcal{L} = \{1, \ldots, \ell\} \subset \mathbb{N}, \ell \in \mathbb{N}$, be a totally ordered label set and $n \in \mathbb{N}$. The total order on \mathcal{L} induces a partial order on \mathcal{L}^n . It is easy to check that \mathcal{L}^n is a distributive lattice, where meet \wedge and join \vee are the component-wise minimum and maximum, respectively. I.e.

$$(x \wedge y)_i = (\min\{x_i, y_i\})_i \text{ and} (x \vee y)_i = (\max\{x_i, y_i\})_i$$
 (1)

for any $x, y \in \mathcal{L}^n$.

Definition. A function $c: \mathcal{L}^n \to \mathbb{R}$ is called *submodular* if for any $x, y \in \mathcal{L}^n$ it holds

$$c(x \wedge y) + c(x \vee y) \le c(x) + c(y). \tag{2}$$

Exercise 2 (4 Points).

- a) Let $g : \mathbb{R} \to \mathbb{R}$ be a convex function. Prove that the function $c : \mathcal{L} \times \mathcal{L} \to \mathbb{R}, c(x, y) = g(|x y|)$, is submodular.
- b) Let $f_i : \mathcal{L} \to \mathbb{R}$ be some functions and let $c_{i,j} : \mathcal{L} \times \mathcal{L} \to \mathbb{R}$ be some pair-wise submodular functions. Prove that the energy $E : \mathcal{L}^n \to \mathbb{R}$, given by

$$E(x) = \sum_{i} f_i(x_i) + \sum_{i,j} c_{i,j}(x_i, x_j),$$
(3)

is submodular.

c) Let $a, b, c \in \mathbb{R}_{\geq 0}$ be some constants. Show that $c : \mathcal{L} \times \mathcal{L} \to \mathbb{R}$, where $c(x, y) = \min\{a \max\{x, y\}, b \max\{x, y\} + c\}$, is submodular but not necessarily convex.

Exercise 3 (4 Points). Let $E : \mathbb{B}^n \to \mathbb{R}$ be a quadratic submodular energy and $x \in \mathbb{B}^n$. Further, let $x^1 \in \mathbb{B}^n$ be the result of the 1-expansion starting from x and let $x^0 \in \mathbb{B}^n$ be the result of the 0-expansion starting from x^1 .

- a) Show that there is a $x^* \in \arg\min_z E(z)$ such that $x^* \leq x^1$.
- b) Show that $x^0 \in \arg \min_z E(z)$.

Programming

(10 Points)

Exercise 4 (Image Denoising, 10 Points). Given a noisy input image $I \in \mathcal{L}^n$ consisting of n pixels and $\mathcal{L} = \{1, \ldots, \ell\}$ intensities, the goal of this exercise is to compute a denoised version $x \in \mathcal{L}^n$ of I (see Figure 1).

To this end, we want to minimize the following energy:

$$E(x) = \sum_{i=1}^{n} f_i(x_i) + \sum_{i=1}^{n} \sum_{j \in \mathcal{N}(i)} f_{ij}(x_i, x_j).$$
(4)

The unary potentials $f_i : \mathcal{L} \to \mathbb{R}$ are chosen accordingly to the statistical noise model. In this exercise we assume Gaussian noise, i.e. $f_i(x_i) = \frac{1}{2}(x_i - I_i)^2$. The pairwise potentials $f_{ij} : \mathcal{L} \times \mathcal{L} \to \mathbb{R}$ are used to model the prior knowledge about the input image. Here we pick $f_{ij}(x_i, x_j) = \lambda |x_i - x_j|^p$ for some parameters $\lambda > 0$, $p \ge 1$. Chose a simple 4-connected neighbourhood for \mathcal{N} .

Download $07_supp.zip$ from the lecture website and use denoising.cpp as a starting point which loads an image, converts it into grayscale and adds Gaussian noise with standard deviation σ . Extend the program in the following ways:

- a) Formulate the multilabel energy minimization problem (4) as a pseudo-Boolean optimization problem using the construction presented in the lecture. Use Kolmogorov's code¹ for graph cuts to find a global minimizer of the submodular pseudo-Boolean energy equivalent to (4). The graph construction of the dataterm is already provided in the code denoising.cpp and your task is to add the edges for the regularizer.
- b) Formulate the energy minimization problem (4) as a multilabel optimization problem in OpenGM and apply the α -Expansion and α - β -Swap algorithms (these are already implemented in OpenGM). Compare the results from the different algorithms to the globally optimal result of exercise a).

Noisy llama

 $\ell = 16$

 $\ell = 128$

Figure 1: Examplary denoising results for p = 1 and $\lambda = 0.25$ and different number of labels.

 $^{^{1}}$ http://pub.ist.ac.at/~vnk/software.html