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Convexity (2 Points)
Exercise 1 (2 Points). Show that the following functions are convex:

a) f : R→ R, x 7→ |x|p, p ∈ [1,∞).

b) f : R→ R, x 7→ log(1 + exp(x)).

c) f : R≥0 → R, x 7→ x log(x).

d) f : R→ R, x 7→ max(0, x).

Multi-Label Problems and Submodularity (8 Points)
Let L = {1, . . . , `} ⊂ N, ` ∈ N, be a totally ordered label set and n ∈ N. The total
order on L induces a partial order on Ln. It is easy to check that Ln is a distributive
lattice, where meet ∧ and join ∨ are the component-wise minimum and maximum,
respectively. I.e. (

x ∧ y
)
i
=
(
min{xi, yi}

)
i
and(

x ∨ y
)
i
=
(
max{xi, yi}

)
i

(1)

for any x, y ∈ Ln.

Definition. A function c : Ln → R is called submodular if for any x, y ∈ Ln it holds

c(x ∧ y) + c(x ∨ y) ≤ c(x) + c(y). (2)

Exercise 2 (4 Points).

a) Let g : R → R be a convex function. Prove that the function c : L × L →
R, c(x, y) = g(|x− y|), is submodular.

b) Let fi : L → R be some functions and let ci,j : L × L → R be some pair-wise
submodular functions. Prove that the energy E : Ln → R, given by

E(x) =
∑
i

fi(xi) +
∑
i,j

ci,j(xi, xj), (3)

is submodular.
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c) Let a, b, c ∈ R≥0 be some constants. Show that c : L × L → R, where c(x, y) =
min{amax{x, y}, bmax{x, y}+ c}, is submodular but not necessarily convex.
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Exercise 3 (4 Points). Let E : Bn → R be a quadratic submodular energy and
x ∈ Bn. Further, let x1 ∈ Bn be the result of the 1-expansion starting from x and
let x0 ∈ Bn be the result of the 0-expansion starting from x1.

a) Show that there is a x∗ ∈ argminz E(z) such that x∗ ≤ x1.

b) Show that x0 ∈ argminz E(z).
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Programming (10 Points)
Exercise 4 (Image Denoising, 10 Points). Given a noisy input image I ∈ Ln consist-
ing of n pixels and L = {1, . . . , `} intensities, the goal of this exercise is to compute
a denoised version x ∈ Ln of I (see Figure 1).

To this end, we want to minimize the following energy:

E(x) =
n∑

i=1

fi(xi) +
n∑

i=1

∑
j∈N (i)

fij(xi, xj). (4)

The unary potentials fi : L → R are chosen accordingly to the statistical noise
model. In this exercise we assume Gaussian noise, i.e. fi(xi) = 1

2
(xi − Ii)

2. The
pairwise potentials fij : L × L → R are used to model the prior knowledge about
the input image. Here we pick fij(xi, xj) = λ|xi − xj|p for some parameters λ > 0,
p ≥ 1. Chose a simple 4-connected neighbourhood for N .

Download 07_supp.zip from the lecture website and use denoising.cpp as a
starting point which loads an image, converts it into grayscale and adds Gaussian
noise with standard deviation σ. Extend the program in the following ways:

a) Formulate the multilabel energy minimization problem (4) as a pseudo-Boolean
optimization problem using the construction presented in the lecture. Use Kol-
mogorov’s code1 for graph cuts to find a global minimizer of the submodular
pseudo-Boolean energy equivalent to (4). The graph construction of the dataterm
is already provided in the code denoising.cpp and your task is to add the edges
for the regularizer.

b) Formulate the energy minimization problem (4) as a multilabel optimization
problem in OpenGM and apply the α-Expansion and α-β-Swap algorithms (these
are already implemented in OpenGM). Compare the results from the different
algorithms to the globally optimal result of exercise a).

Noisy llama ` = 16 ` = 128

Figure 1: Examplary denoising results for p = 1 and λ = 0.25 and different number
of labels.

1http://pub.ist.ac.at/~vnk/software.html
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