Weekly Exercises 7

Room: 02.09.023
Tuesday, 09.12.2015, 14:15-15:45
Submission deadline: Tuesday, 09.12.2015, 11:15, Room 02.09.023

Convexity

Exercise 1 (2 Points). Show that the following functions are convex:
a) $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto|x|^{p}, p \in[1, \infty)$.
b) $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \log (1+\exp (x))$.
c) $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}, x \mapsto x \log (x)$.
d) $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \max (0, x)$.

Solution.

a) We have $f(x)=g(h(x))$, with $g: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}, x \mapsto x^{p}$ and $h(x)=|x|$. Since g is increasing and convex on $\mathbb{R}_{\geq 0}$ and h is convex, their composition is convex as well.
b) $f^{\prime}(x)=\frac{\exp (x)}{1+\exp (x)}, f^{\prime \prime}(x)=\frac{\exp (x)(1+\exp (x))-\exp (x) \exp (x)}{(1+\exp (x))^{2}}=\frac{\exp (x)}{(1+\exp (x))^{2}} \geq 0$.
c) $f^{\prime}(x)=x \frac{1}{x}+\log (x)=\log (x), f^{\prime \prime}(x)=\frac{1}{x} \geq 0$ for $x \geq 0$.
d) We want to prove that

$$
\max (0, \alpha x+(1-\alpha) y) \leq \alpha \max (0, x)+(1-\alpha) \max (0, y)
$$

Clearly it holds

$$
0 \leq \alpha \max (0, x)+(1-\alpha) \max (0, y)
$$

and also

$$
\alpha x+(1-\alpha) y \leq \alpha \max (0, x)+(1-\alpha) \max (0, y)
$$

Hence the claim follows.

Multi-Label Problems and Submodularity (8 Points)

Let $\mathcal{L}=\{1, \ldots, \ell\} \subset \mathbb{N}, \ell \in \mathbb{N}$, be a totally ordered label set and $n \in \mathbb{N}$. The total order on \mathcal{L} induces a partial order on \mathcal{L}^{n}. It is easy to check that \mathcal{L}^{n} is a distributive
lattice, where meet \wedge and join \vee are the component-wise minimum and maximum, respectively. I.e.

$$
\begin{align*}
& (x \wedge y)_{i}=\left(\min \left\{x_{i}, y_{i}\right\}\right)_{i} \text { and } \\
& (x \vee y)_{i}=\left(\max \left\{x_{i}, y_{i}\right\}\right)_{i} \tag{1}
\end{align*}
$$

for any $x, y \in \mathcal{L}^{n}$.
Definition. A function $c: \mathcal{L}^{n} \rightarrow \mathbb{R}$ is called submodular if for any $x, y \in \mathcal{L}^{n}$ it holds

$$
\begin{equation*}
c(x \wedge y)+c(x \vee y) \leq c(x)+c(y) \tag{2}
\end{equation*}
$$

Exercise 2 (4 Points).
a) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a convex function. Prove that the function $c: \mathcal{L} \times \mathcal{L} \rightarrow$ $\mathbb{R}, c(x, y)=g(|x-y|)$, is submodular.
b) Let $f_{i}: \mathcal{L} \rightarrow \mathbb{R}$ be some functions and let $c_{i, j}: \mathcal{L} \times \mathcal{L} \rightarrow \mathbb{R}$ be some pair-wise submodular functions. Prove that the energy $E: \mathcal{L}^{n} \rightarrow \mathbb{R}$, given by

$$
\begin{equation*}
E(x)=\sum_{i} f_{i}\left(x_{i}\right)+\sum_{i, j} c_{i, j}\left(x_{i}, x_{j}\right), \tag{3}
\end{equation*}
$$

is submodular.
c) Let $a, b, c \in \mathbb{R}_{\geq 0}$ be some constants. Show that $c: \mathcal{L} \times \mathcal{L} \rightarrow \mathbb{R}$, where $c(x, y)=$ $\min \{a \max \{x, y\}, b \max \{x, y\}+c\}$, is submodular but not necessarily convex.

Exercise 3 (4 Points). Let $E: \mathbb{B}^{n} \rightarrow \mathbb{R}$ be a quadratic submodular energy and $x \in \mathbb{B}^{n}$. Further, let $x^{1} \in \mathbb{B}^{n}$ be the result of the 1-expansion starting from x and let $x^{0} \in \mathbb{B}^{n}$ be the result of the 0-expansion starting from x^{1}.
a) Show that there is a $x^{*} \in \arg \min _{z} E(z)$ such that $x^{*} \leq x^{1}$.
b) Show that $x^{0} \in \arg \min _{z} E(z)$.

Solution. First let us recall the definition of the α-Expansion starting from z. Given a current labeling $z \in \mathcal{L}^{n}$ and label $\alpha \in \mathcal{L}$ we obtain a minimizer $y^{*} \in \mathbb{B}^{n}$ of the following energy:

$$
E^{z, \alpha}(y)=\sum_{i=1}^{n} f_{i}^{z, \alpha}\left(y_{i}\right)+\sum_{i=1}^{n} \sum_{j \in \mathcal{N}(i)} f_{i j}^{z, \alpha}\left(y_{i}, y_{j}\right)
$$

where

$$
\begin{array}{ll}
f_{i}^{z, \alpha}(0)=f_{i}\left(z_{i}\right), & f_{i}^{z, \alpha}(1)=f_{i}(\alpha) \\
f_{i j}^{z, \alpha}(0,0)=f_{i j}\left(z_{i}, z_{j}\right), & f_{i j}^{z, \alpha}(0,1)=f_{i j}\left(z_{i}, \alpha\right), \\
f_{i j}^{z, \alpha}(1,0)=f_{i j}\left(\alpha, z_{j}\right), & f_{i j}^{z, \alpha}(1,1)=f_{i j}(\alpha, \alpha) .
\end{array}
$$

Subsequently, we set

$$
z_{i}^{\text {new }}= \begin{cases}\alpha, & \text { if } y_{i}=1 \\ z_{i}, & \text { otherwise }\end{cases}
$$

Clearly it holds that $E^{z, \alpha}\left(y^{*}\right)=E\left(z^{\text {new }}\right)$ by definition. Since y^{*} is a global minimizer, $z^{\text {new }} \in \mathcal{L}^{n}$ is the optimal solution that can be obtained by setting some variables to the label α.
a) Let us define the sets

$$
\begin{align*}
& A=\left\{i \mid x_{i}^{1}=1\right\}, \tag{4}\\
& B=\left\{i \mid x_{i}^{*}=1\right\} \tag{5}\\
& C=\left\{i \mid x_{i}^{0}=1\right\}, \tag{6}\\
& X=\left\{i \mid x_{i}=1\right\}, \tag{7}\\
& S=A \cap B . \tag{8}
\end{align*}
$$

In the following we identifity sets with binary vectors in \mathbb{B}^{n} as defined above, i.e., we interchangingly use $E(A)$ for $E\left(x^{1}\right)$.
Since E is submodular, we have

$$
\begin{equation*}
E(A \cup B) \leq E(A)+\underbrace{E(B)-E(S)}_{\leq 0} \leq E(A) \tag{9}
\end{equation*}
$$

Since A is obtained by the 1-expansion starting from X, we have that $X \subset A$ and that A is the set with the overall minimum energy containing X, i.e. we have that:

$$
E(A) \leq E(Y), \forall Y \supset X
$$

Since A is the set with the overall minimum energy containing X and clearly $A \cup B$ also contains X and $E(A \cup B) \leq E(A)$ we have that

$$
E(A)=E(A \cup B)
$$

Hence, it follows from (9) that

$$
E(S) \leq E(B)
$$

which in turn shows that $S \in \operatorname{argmin}_{z} E(z)$ since B is the global minimizer of E. Since $S \subset A$ we have that $x^{*} \leq x^{1}$ for some global minimizer $x^{*} \in \operatorname{argmin}_{z} E(z)$.
b) According to the definition of the 0-expansion starting from A, C is the set with the minimal energy having the property $\bar{A} \subset \bar{C}$, i.e.

$$
E(C) \leq E(Y), \forall \bar{Y} \supset \bar{A}
$$

Since from a) we have $B \subset A$ we have that $\bar{B} \supset \bar{A}$ and hence $E(C) \leq E(B)$. Hence C is a global minimizer, i.e. $x^{0} \in \operatorname{argmin}_{z} E(z)$.

Programming

Exercise 4 (Image Denoising, 10 Points). Given a noisy input image $I \in \mathcal{L}^{n}$ consisting of n pixels and $\mathcal{L}=\{1, \ldots, \ell\}$ intensities, the goal of this exercise is to compute a denoised version $x \in \mathcal{L}^{n}$ of I (see Figure 1).

To this end, we want to minimize the following energy:

$$
\begin{equation*}
E(x)=\sum_{i=1}^{n} f_{i}\left(x_{i}\right)+\sum_{i=1}^{n} \sum_{j \in \mathcal{N}(i)} f_{i j}\left(x_{i}, x_{j}\right) . \tag{10}
\end{equation*}
$$

The unary potentials $f_{i}: \mathcal{L} \rightarrow \mathbb{R}$ are chosen accordingly to the statistical noise model. In this exercise we assume Gaussian noise, i.e. $f_{i}\left(x_{i}\right)=\frac{1}{2}\left(x_{i}-I_{i}\right)^{2}$. The pairwise potentials $f_{i j}: \mathcal{L} \times \mathcal{L} \rightarrow \mathbb{R}$ are used to model the prior knowledge about the input image. Here we pick $f_{i j}\left(x_{i}, x_{j}\right)=\lambda\left|x_{i}-x_{j}\right|^{p}$ for some parameters $\lambda>0$, $p \geq 1$. Chose a simple 4 -connected neighbourhood for \mathcal{N}.

Download 07_supp.zip from the lecture website and use denoising.cpp as a starting point which loads an image, converts it into grayscale and adds Gaussian noise with standard deviation σ. Extend the program in the following ways:
a) Formulate the multilabel energy minimization problem (10) as a pseudo-Boolean optimization problem using the construction presented in the lecture. Use Kolmogorov's code ${ }^{1}$ for graph cuts to find a global minimizer of the submodular pseudo-Boolean energy equivalent to (10). The graph construction of the dataterm is already provided in the code denoising.cpp and your task is to add the edges for the regularizer.
b) Formulate the energy minimization problem (10) as a multilabel optimization problem in OpenGM and apply the α-Expansion and α - β-Swap algorithms (these are already implemented in OpenGM). Compare the results from the different algorithms to the globally optimal result of exercise a).

Figure 1: Examplary denoising results for $p=1$ and $\lambda=0.25$ and different number of labels.

[^0]
[^0]: ${ }^{1}$ http://pub.ist.ac.at/ ${ }^{\text {vnk/software.html }}$

