Weekly Exercises 8

Room: 02.09.023
Tuesday, 16.12.2015, 14:15-15:45
Submission deadline: Tuesday, 16.12.2015, 11:15, Room 02.09.023

Higher-Order Reduction Methods

Exercise 1 (4 Points). Consider the following pseudo-Boolean function $f: \mathbb{B}^{5} \rightarrow \mathbb{R}$

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{5}\right)=5 x_{1} x_{2}-7 x_{1} x_{2} x_{3} x_{4}+2 x_{1} x_{2} x_{3} x_{5} . \tag{1}
\end{equation*}
$$

a) Reduction by Substitution. Reduce the energy (1) to an equivalent quadratic pseudo-Boolean function by substituting products of two variables by a new variable and introducing constraints.
b) Reduction by Minimum Selection. Apply Ishikawa's extended minimum selection reduction method to energy (1).

Multi-Linear Polynomial Representation (4 Points)

Exercise 2 (4 Points). Let $E: \mathbb{B}^{n} \rightarrow \mathbb{R}, n \in \mathbb{N}$, be a pseudo-boolean function. Clearly it can be written as the multi-linear polynomial

$$
\begin{equation*}
E\left(x_{1}, \ldots, x_{n}\right)=\sum_{\alpha \subset\{1, \ldots, n\}} a_{\alpha} \mathbf{x}_{\alpha}, \tag{2}
\end{equation*}
$$

where $\mathbf{x}_{\alpha}=\Pi_{i \in \alpha} x_{i}$ and $a_{\alpha} \in \mathbb{R}$ are the coefficients, defining E. Now let $E_{\beta} \in$ $\mathbb{R}, \beta \subset\{1, \ldots, n\}$, be defined by $E_{\beta}=E\left(x_{i}=1, i \in \beta, x_{j}=0, j \in\{1, \ldots, n\} \backslash \beta\right)$. For example let $n=3$, then $E_{\{1,2\}}=E(1,1,0)$ and $E_{\{2\}}=E(0,1,0)$.
a) Show that the coefficients a_{α} are uniquely determined by the following recursive formula:

$$
\begin{equation*}
a_{\alpha}=E_{\alpha}-\sum_{\beta \subsetneq \alpha} a_{\beta} . \tag{3}
\end{equation*}
$$

b) Use the recursive formula (3) to derive the coefficients a_{α} of the multi-linear polynomial of E, where E is given by:

x_{1}	x_{2}	x_{3}	$E\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	2
0	0	1	-13
0	1	0	4
0	1	1	5
1	0	0	-7
1	0	1	3
1	1	0	9
1	1	1	8

Programming

The goal of this exercise is to perform semantic multilabel segmentation of an image $I: \Omega \rightarrow \mathbb{R}^{3}$ using a contrast sensitive Potts regularizer. For the chosen dataset, the labels $\mathcal{L}=\{1, \ldots, 21\}$ denote various classes such as background, horse, ... The goal is to find a segmentation $x \in \mathcal{L}^{n}$ by minimizing the following energy:

$$
\begin{equation*}
E(x)=\sum_{i=1}^{n} f_{i}\left(x_{i}\right)+\sum_{i=1}^{n} \sum_{j \in \mathcal{N}(i)} f_{i j}\left(x_{i}, x_{j}\right) \tag{4}
\end{equation*}
$$

The unary potentials $f_{i}: \mathcal{L}^{n} \rightarrow \mathbb{R}$ for some example images are provided as .hdf5 files in the supplementary material 08_supp.zip and were computed using a state-of-the-art Convolutional Neural Network ${ }^{1}$. The output of the network is a score for every class $s_{i} \in \mathbb{R}^{21}$ at each pixel $i \in \Omega$. It is stored in a pixel-first fashion, i.e. to access the cost of the l-th label at pixel (x, y) use the linear index data $[x+y * W+1 * W * H]$. Compute the unary potentials as

$$
f_{i}\left(x_{i}\right)=-s_{i}, \forall i \in \Omega
$$

For the pairwise potentials, use the contrast sensitive Potts-model:

$$
f_{i j}\left(x_{i}, x_{j}\right)= \begin{cases}0, & \text { if } x_{i}=x_{j} \\ g(i, j), & \text { otherwise }\end{cases}
$$

where $g(i, j)=\lambda \exp \left(-\gamma\left|I_{i}-I_{j}\right|\right)$ for some parameters $\lambda>0, \gamma>0$. Here $I_{i} \in \mathbb{R}^{3}$ denotes the color of pixel $i \in \Omega$ in the image $I: \Omega \rightarrow \mathbb{R}^{3}$.

Implement the model in OpenGM using segmentation.cpp provided in the supplementary material as a starting point. For inference, use the α-Expansion method.

Input

Unaries only

Potts

[^0]
[^0]: ${ }^{1}$ Fully Convolutional Networks for Semantic Segmentation. www.cs.berkeley.edu/~jonlong/ long_shelhamer_fcn.pdf

