Combinatorial Optimization in Computer Vision

Lecture: F. R. Schmidt and C. Domokos

Computer Vision Group Institut für Informatik

Exercises: T. Möllenhoff and T. Windheuser

Technische Universität München

Winter Semester 2015/2016

Weekly Exercises 10

Room: 02.09.023

Tuesday, 19.01.2016, 14:15-15:45

Submission deadline: Tuesday, 19.01.2016, 11:15, Room 02.09.023

Fast Primal-Dual

(5 Points)

Exercise 1 (Multilabeling ILP, 3 Points). Given a multilabel problem with n=2 pixels, connected by an edge set \mathcal{E} forming a complete graph and m=3 labels $(\mathcal{L}=\{1,2,3\})$, explicitly write out the linear programming formulation from the lecture

$$\min_{x} \langle c, x \rangle$$

$$Ax = b, x \ge 0.$$

in matrix-vector notation, i.e. state the following quantities element by element:

- $A \in \mathbb{R}^{(n+2|\mathcal{E}|m)\times(nm+|\mathcal{E}|m^2)}$,
- $b \in \mathbb{R}^{n+2|\mathcal{E}|m}$,
- $c \in \mathbb{R}^{nm+|\mathcal{E}|m^2}$.

Assume that $d(\cdot, \cdot)$ is the Potts metric.

Exercise 2 (Complementary slackness, 2 Points). Let (x, y) be a pair of integral primal and dual feasible solutions to the linear programming relaxation of the multilabel problem:

$$\min_{x} \langle c, x \rangle \qquad \max_{y} \langle b, y \rangle$$

$$Ax = b, x \ge 0.$$

$$A^{T}y \le c.$$

If (x, y) satisfy the relaxed primal complementary slackness conditions

$$\forall x_j > 0 \Rightarrow \sum_{i=1}^m a_{ij} y_i \ge c_j / \varepsilon_j,$$

show that then x is an ε -approximation to the optimal integral solution x^* with $\varepsilon = \max_i \varepsilon_i$.

Branch and Bound (2 Points)

Exercise 3 (Lower bound, 2 Points). For a finite set Ω , consider the following segmentation energy function $E: \mathbb{B}^n \to \mathbb{R}$:

$$E(x) = \min_{\omega \in \Omega} C(\omega) + \sum_{i=1}^{n} f_i(\omega) x_i + \sum_{i=1}^{n} b_i(\omega) (1 - x_i) + \sum_{i=1}^{n} \sum_{j \in \mathcal{N}(i)} w_{ij}(\omega) |x_i - x_j|, (1)$$

with $C: \Omega \to \mathbb{R}$, $f_i: \Omega \to \mathbb{R}$, $b_i: \Omega \to \mathbb{R}$, $w_{ij}: \Omega \to \mathbb{R}$. Prove the following lower bound:

$$E(x) \ge \left(\min_{\omega \in \Omega} C(\omega)\right) + \sum_{i=1}^{n} \left(\min_{\omega \in \Omega} f_i(\omega)\right) x_i + \sum_{i=1}^{n} \left(\min_{\omega \in \Omega} b_i(\omega)\right) (1 - x_i)$$

$$+ \sum_{i=1}^{n} \sum_{j \in \mathcal{N}(i)} \left(\min_{\omega \in \Omega} w_{ij}(\omega)\right) |x_i - x_j| =: \ell(x, \Omega).$$
(2)

Remark: This shows that $E^* = \min_x E(x) \ge \min_x \ell(x, \Omega) = L(\Omega)$ and $L(\Omega)$ is a lower bound for the global optimum. Note that the lower bound $L(\Omega)$ fulfills three important properties which make it applicable for branch and bound optimization methods:

- 1. Monotonicity: $\Omega_1 \subset \Omega_2 \Rightarrow L(\Omega_1) \geq L(\Omega_2)$.
- 2. Computability: Evaluating $L(\Omega)$ for some given Ω corresponds to minimizing a submodular quadratic pseudo-Boolean function.
- 3. **Tightness:** For $|\Omega| = 1$, i.e. $\Omega = \{\omega\}$ we have $L(\{\omega\}) = \min_x E(x)$.

Programming

(15 Points)

Exercise 4 (Branch-and-Mincut¹, 15 Points). In this exercise we apply the branch and bound method from the lecture to find a *global minimizer* of a discrete version of the celebrated Chan-Vese² segmentation energy function:

$$E(x, \{c_f, c_b\}) = \mu \sum_{i=1}^n \sum_{j \in \mathcal{N}(i)} |x_i - x_j|$$

$$+ \sum_{i=1}^n \left(\nu + \lambda_1 (I_i - c_f)^2\right) x_i + \sum_{i=1}^n \lambda_2 (I_i - c_b)^2 (1 - x_i).$$
(3)

Here I denotes a gray-scale input image with n pixels, i.e. at every pixel $1 \le i \le n$ we have $I_i \in [0, 255]$. The variable $\omega = (c_f, c_b) \in \Omega = [0, 255]^2$ denotes the mean intensity of foreground respectively the background of the segmentation $x \in \mathbb{B}^n$.

a) Find an approximate solution of (13) by alternatingly optimizing over x and ω :

$$x^{k+1} \in \operatorname{argmin}_{x} E(x, \omega^{k}),$$

 $\omega^{k+1} = \operatorname{argmin}_{\omega} E(x^{k+1}, \omega).$

The optimization problem in x is a 2-region segmentation problem, so reuse your code from the previous exercises. The problem in ω has a simple closed form solution. Use chanvese_alternating.cpp from 10_supp.zip as a start.

b) Compute a global minimizer of (13) using the branch and bound best-first tree search. The search space Ω is the rectangle $[0, 255]^2$. In your implementation, you can keep a sorted queue of rectangles Ω_i , and every iteration remove the rectangle with the smallest lower bound and split it into two smaller rectangles along the longest edge. As a lower bound on (13) use the bound (8) dervied in the theoretical exercise. You can use chanvese_global.cpp as a starting point.

Figure 1: The figure shows the input image and a global minimizer of (13) for parameters $\lambda_1 = \lambda_2 = 0.0001$, $\mu = 1$, $\nu = 0.1$. The optimal foreground and background colors were found as $c_f^* = 81$ and $c_b^* = 167$.

¹V. Lempitsky, A. Blake, C. Rother, Image Segmentation by Branch-and-Mincut, ECCV 2008

²T. Chan, L. Vese: Active contours without edges. Trans. Image Process., 10(2), 2001.