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Fast Primal-Dual (5 Points)

Exercise 1 (Multilabeling ILP, 3 Points). Given a multilabel problem with n = 2
pixels, connected by an edge set £ forming a complete graph and m = 3 labels
(L = {1,2,3}), explicitly write out the linear programming formulation from the
lecture

min (c, )
x
Ax =b,x > 0.
in matrix-vector notation, i.e. state the following quantities element by element:
e Ac R(n+2|5|m)><(nm+|$\m2)
P = Rn+2\5\m,
e cc an+|5\m2‘
Assume that d(-,-) is the Potts metric.

Exercise 2 (Complementary slackness, 2 Points). Let (x,y) be a pair of integral
primal and dual feasible solutions to the linear programming relaxation of the mul-
tilabel problem:
min (c,x) max (b, y)
T y

Ax =b,x > 0. ATy <.
If (z,y) satisfy the relaxed primal complementary slackness conditions

m
ij >0= Zaijyi > Cj/€j,
=1

show that then z is an e-approximation to the optimal integral solution z* with
€ = Inax; ;.



Branch and Bound (2 Points)

Exercise 3 (Lower bound, 2 Points). For a finite set 2, consider the following
segmentation energy function F : B" — R:

E(z) = min C(w) +Zf, a:z—l—ibi(w (1—a;) +Z > wi(w)|as — x50, (1)
=1

=1 jEN(i)

withC: Q =R, f;: Q =R, b : Q = R, w; : @ = R. Prove the following lower
bound:

E(x) > ({?g}% Clw ) + Z (mln filw ) Ti + ZZ”; (glelg b,-(w)) (1— )
+ Z > (mln wij (w > |25 — ;| = £(x, Q).

i=1 jeN (i)

(2)

Remark: This shows that E* = min, F(z) > min, {(z,Q) = L(Q) and L(Q) is a
lower bound for the global optimum. Note that the lower bound L(€2) fulfills three
important properties which make it applicable for branch and bound optimization
methods:

1. Monotonicity: Q; C Qs = L(21) > L(£2).

2. Computability: Evaluating L(2) for some given € corresponds to minimiz-
ing a submodular quadratic pseudo-Boolean function.

3. Tightness: For [ =1, i.e. 2 = {w} we have L({w}) = min, E(z).



Programming (15 Points)

Exercise 4 (Branch-and-Mincut!, 15 Points). In this exercise we apply the branch
and bound method from the lecture to find a global minimizer of a discrete version
of the celebrated Chan-Vese? segmentation energy function:

Ew {epal) =p Y > lri—a

i=1 jeN(i) (3)

+ Z (V + )‘1([1 - Cf>2) ZT; + Z/\Q(IZ — Cb)2<1 — ,ﬁL’l)

i=1 i=1

Here I denotes a gray-scale input image with n pixels, i.e. at every pixel 1 <i<n
we have I; € [0,255]. The variable w = (cf,¢,) € Q = [0,255]* denotes the mean
intensity of foreground respectively the background of the segmentation x € B".

a) Find an approximate solution of (13) by alternatingly optimizing over x and w:

" € argmin, E(z,w"),

k+ chrl7 QJ).

Wt = argmin, E(x
The optimization problem in x is a 2-region segmentation problem, so reuse your
code from the previous exercises. The problem in w has a simple closed form
solution. Use chanvese_alternating.cpp from 10_supp.zip as a start.

b) Compute a global minimizer of (13) using the branch and bound best-first tree
search. The search space € is the rectangle [0,255]%. In your implementation,
you can keep a sorted queue of rectangles {2;, and every iteration remove the
rectangle with the smallest lower bound and split it into two smaller rectangles
along the longest edge. As a lower bound on (13) use the bound (8) dervied in
the theoretical exercise. You can use chanvese_global.cpp as a starting point.

Figure 1: The figure shows the input image and a global minimizer of (13) for
parameters A\; = Ay = 0.0001, 4 = 1, v = 0.1. The optimal foreground and
background colors were found as ¢} = 81 and ¢j = 167.
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