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Fast Primal-Dual (5 Points)
Exercise 1 (Multilabeling ILP, 3 Points). Given a multilabel problem with n = 2
pixels, connected by an edge set E forming a complete graph and m = 3 labels
(L = {1, 2, 3}), explicitly write out the linear programming formulation from the
lecture

min
x
〈c, x〉

Ax = b, x ≥ 0.

in matrix-vector notation, i.e. state the following quantities element by element:

• A ∈ R(n+2|E|m)×(nm+|E|m2),

• b ∈ Rn+2|E|m,

• c ∈ Rnm+|E|m2 .

Assume that d(·, ·) is the Potts metric.

Exercise 2 (Complementary slackness, 2 Points). Let (x, y) be a pair of integral
primal and dual feasible solutions to the linear programming relaxation of the mul-
tilabel problem:

min
x
〈c, x〉

Ax = b, x ≥ 0.

max
y
〈b, y〉

ATy ≤ c.

If (x, y) satisfy the relaxed primal complementary slackness conditions

∀xj > 0⇒
m∑
i=1

aijyi ≥ cj/εj,

show that then x is an ε-approximation to the optimal integral solution x∗ with
ε = maxj εj.
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Branch and Bound (2 Points)
Exercise 3 (Lower bound, 2 Points). For a finite set Ω, consider the following
segmentation energy function E : Bn → R:

E(x) = min
ω∈Ω

C(ω) +
n∑

i=1

fi(ω)xi +
n∑

i=1

bi(ω)(1− xi) +
n∑

i=1

∑
j∈N (i)

wij(ω)|xi − xj|, (1)

with C : Ω → R, fi : Ω → R, bi : Ω → R, wij : Ω → R. Prove the following lower
bound:

E(x) ≥
(

min
ω∈Ω

C(ω)

)
+

n∑
i=1

(
min
ω∈Ω

fi(ω)

)
xi +

n∑
i=1

(
min
ω∈Ω

bi(ω)

)
(1− xi)

+
n∑

i=1

∑
j∈N (i)

(
min
ω∈Ω

wij(ω)

)
|xi − xj| =: `(x,Ω).

(2)

Remark: This shows that E∗ = minxE(x) ≥ minx `(x,Ω) = L(Ω) and L(Ω) is a
lower bound for the global optimum. Note that the lower bound L(Ω) fulfills three
important properties which make it applicable for branch and bound optimization
methods:

1. Monotonicity: Ω1 ⊂ Ω2 ⇒ L(Ω1) ≥ L(Ω2).

2. Computability: Evaluating L(Ω) for some given Ω corresponds to minimiz-
ing a submodular quadratic pseudo-Boolean function.

3. Tightness: For |Ω| = 1, i.e. Ω = {ω} we have L({ω}) = minxE(x).
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Programming (15 Points)
Exercise 4 (Branch-and-Mincut1, 15 Points). In this exercise we apply the branch
and bound method from the lecture to find a global minimizer of a discrete version
of the celebrated Chan-Vese2 segmentation energy function:

E(x, {cf , cb}) = µ
n∑

i=1

∑
j∈N (i)

|xi − xj|

+
n∑

i=1

(
ν + λ1(Ii − cf )2

)
xi +

n∑
i=1

λ2(Ii − cb)2(1− xi).
(3)

Here I denotes a gray-scale input image with n pixels, i.e. at every pixel 1 ≤ i ≤ n
we have Ii ∈ [0, 255]. The variable ω = (cf , cb) ∈ Ω = [0, 255]2 denotes the mean
intensity of foreground respectively the background of the segmentation x ∈ Bn.

a) Find an approximate solution of (13) by alternatingly optimizing over x and ω:

xk+1 ∈ argminx E(x, ωk),

ωk+1 = argminω E(xk+1, ω).

The optimization problem in x is a 2-region segmentation problem, so reuse your
code from the previous exercises. The problem in ω has a simple closed form
solution. Use chanvese_alternating.cpp from 10_supp.zip as a start.

b) Compute a global minimizer of (13) using the branch and bound best-first tree
search. The search space Ω is the rectangle [0, 255]2. In your implementation,
you can keep a sorted queue of rectangles Ωi, and every iteration remove the
rectangle with the smallest lower bound and split it into two smaller rectangles
along the longest edge. As a lower bound on (13) use the bound (8) dervied in
the theoretical exercise. You can use chanvese_global.cpp as a starting point.

Figure 1: The figure shows the input image and a global minimizer of (13) for
parameters λ1 = λ2 = 0.0001, µ = 1, ν = 0.1. The optimal foreground and
background colors were found as c∗f = 81 and c∗b = 167.

1V. Lempitsky, A. Blake, C. Rother, Image Segmentation by Branch-and-Mincut, ECCV 2008
2T. Chan, L. Vese: Active contours without edges. Trans. Image Process., 10(2), 2001.
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