Weekly Exercises 10

Room: 02.09.023
Tuesday, 19.01.2016, 14:15-15:45
Submission deadline: Tuesday, 19.01.2016, 11:15, Room 02.09.023

Fast Primal-Dual

Exercise 1 (Multilabeling ILP, 3 Points). Given a multilabel problem with $n=2$ pixels, connected by an edge set \mathcal{E} forming a complete graph and $m=3$ labels $(\mathcal{L}=\{1,2,3\})$, explicitly write out the linear programming formulation from the lecture

$$
\begin{aligned}
& \min _{x}\langle c, x\rangle \\
& A x=b, x \geq 0 .
\end{aligned}
$$

in matrix-vector notation, i.e. state the following quantities element by element:

- $A \in \mathbb{R}^{(n+2|\mathcal{E}| m) \times\left(n m+|\mathcal{E}| m^{2}\right)}$,
- $b \in \mathbb{R}^{n+2|\mathcal{E}| m}$,
- $c \in \mathbb{R}^{n m+|\mathcal{E}| m^{2}}$.

Assume that $d(\cdot, \cdot)$ is the Potts metric.

Solution.

$$
\begin{align*}
& x=\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right), \tag{1}\\
& x_{1}=\left(\begin{array}{llllll}
x_{1: 1} & x_{1: 2} & x_{1: 3} & x_{2: 1} & x_{2: 2} & x_{2: 3}
\end{array}\right) \text {, } \tag{2}\\
& x_{2}=\left(\begin{array}{llllllll}
x_{12: 11} & x_{12: 12} & x_{12: 13} & x_{12: 21} & x_{12: 22} & x_{12: 23} & x_{12: 31} & x_{12: 32}
\end{array} x_{12: 33}\right) . \tag{3}\\
& c=\left(\begin{array}{ll}
c_{1} & c_{2}
\end{array}\right), \tag{4}\\
& c_{1}=\left(\varphi_{1}(1) \quad \varphi_{1}(2) \quad \varphi_{1}(3) \quad \varphi_{2}(1) \quad \varphi_{2}(2) \quad \varphi_{2}(3)\right), \tag{5}\\
& c_{2}=\left(\begin{array}{lllllllll}
0 & w_{12} & w_{12} & w_{12} & 0 & w_{12} & w_{12} & w_{12} & 0
\end{array}\right) . \tag{6}
\end{align*}
$$

$$
\begin{aligned}
& A=\left(\begin{array}{ccccccccccccccc}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right) . \\
& b=\left(\begin{array}{lllllllllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) . \\
&
\end{aligned}
$$

Exercise 2 (Complementary slackness, 2 Points). Let (x, y) be a pair of integral primal and dual feasible solutions to the linear programming relaxation of the multilabel problem:

$$
\begin{aligned}
& \min _{x}\langle c, x\rangle \\
& A x=b, x \geq 0 .
\end{aligned}
$$

$$
\begin{aligned}
& \max _{y}\langle b, y\rangle \\
& A^{T} y \leq c .
\end{aligned}
$$

If (x, y) satisfy the relaxed primal complementary slackness conditions

$$
\forall x_{j}>0 \Rightarrow \sum_{i=1}^{m} a_{i j} y_{i} \geq c_{j} / \varepsilon_{j}
$$

show that then x is an ε-approximation to the optimal integral solution x^{*} with $\varepsilon=\max _{j} \varepsilon_{j}$.

Solution.

$$
\begin{aligned}
& \varepsilon_{j}\left(A^{T} y\right)_{j} \geq c_{j}, \quad \forall j \text { with } x_{j}>0 \\
\Rightarrow & \langle c, x\rangle \leq \varepsilon\left\langle x, A^{T} y\right\rangle=\varepsilon\langle y, A x\rangle \leq \varepsilon\langle y, b\rangle .
\end{aligned}
$$

Thus for $\varepsilon \geq 1,(x, y)$ is an ε-approximation to the optimal integral solution x^{*} :

$$
\left\langle c, x^{*}\right\rangle \leq\langle c, x\rangle \leq \varepsilon\langle b, y\rangle \leq \varepsilon\left\langle c, x^{*}\right\rangle .
$$

Branch and Bound (2 Points)

Exercise 3 (Lower bound, 2 Points). For a finite set Ω, consider the following segmentation energy function $E: \mathbb{B}^{n} \rightarrow \mathbb{R}$:

$$
\begin{equation*}
E(x)=\min _{\omega \in \Omega} C(\omega)+\sum_{i=1}^{n} f_{i}(\omega) x_{i}+\sum_{i=1}^{n} b_{i}(\omega)\left(1-x_{i}\right)+\sum_{i=1}^{n} \sum_{j \in \mathcal{N}(i)} w_{i j}(\omega)\left|x_{i}-x_{j}\right|, \tag{7}
\end{equation*}
$$

with $C: \Omega \rightarrow \mathbb{R}, f_{i}: \Omega \rightarrow \mathbb{R}, b_{i}: \Omega \rightarrow \mathbb{R}, w_{i j}: \Omega \rightarrow \mathbb{R}$. Prove the following lower bound:

$$
\begin{align*}
E(x) \geq & \left(\min _{\omega \in \Omega} C(\omega)\right)+\sum_{i=1}^{n}\left(\min _{\omega \in \Omega} f_{i}(\omega)\right) x_{i}+\sum_{i=1}^{n}\left(\min _{\omega \in \Omega} b_{i}(\omega)\right)\left(1-x_{i}\right) \\
& +\sum_{i=1}^{n} \sum_{j \in \mathcal{N}(i)}\left(\min _{\omega \in \Omega} w_{i j}(\omega)\right)\left|x_{i}-x_{j}\right|=: \ell(x, \Omega) . \tag{8}
\end{align*}
$$

Remark: This shows that $E^{*}=\min _{x} E(x) \geq \min _{x} \ell(x, \Omega)=L(\Omega)$ and $L(\Omega)$ is a lower bound for the global optimum. Note that the lower bound $L(\Omega)$ fulfills three important properties which make it applicable for branch and bound optimization methods:

1. Monotonicity: $\Omega_{1} \subset \Omega_{2} \Rightarrow L\left(\Omega_{1}\right) \geq L\left(\Omega_{2}\right)$.
2. Computability: Evaluating $L(\Omega)$ for some given Ω corresponds to minimizing a submodular quadratic pseudo-Boolean function.
3. Tightness: For $|\Omega|=1$, i.e. $\Omega=\{\omega\}$ we have $L(\{\omega\})=\min _{x} E(x)$.

Solution. Since $x_{i}, 1-x_{i}$ and $\left|x_{i}-x_{j}\right|$ are all positive for $x \in \mathbb{B}^{n}$ and we have by definition from the minimum,

$$
\begin{equation*}
C\left(\omega^{\prime}\right) \geq \min _{\omega \in \Omega} C(\omega), \quad \forall \omega^{\prime} \in \Omega \tag{9}
\end{equation*}
$$

the inequality holds.

Programming

Exercise 4 (Branch-and-Mincut ${ }^{1}, 15$ Points). In this exercise we apply the branch and bound method from the lecture to find a global minimizer of a discrete version of the celebrated Chan-Vese ${ }^{2}$ segmentation energy function:

$$
\begin{align*}
E\left(x,\left\{c_{f}, c_{b}\right\}\right) & =\mu \sum_{i=1}^{n} \sum_{j \in \mathcal{N}(i)}\left|x_{i}-x_{j}\right| \\
& +\sum_{i=1}^{n}\left(\nu+\lambda_{1}\left(I_{i}-c_{f}\right)^{2}\right) x_{i}+\sum_{i=1}^{n} \lambda_{2}\left(I_{i}-c_{b}\right)^{2}\left(1-x_{i}\right) . \tag{10}
\end{align*}
$$

Here I denotes a gray-scale input image with n pixels, i.e. at every pixel $1 \leq i \leq n$ we have $I_{i} \in[0,255]$. The variable $\omega=\left(c_{f}, c_{b}\right) \in \Omega=[0,255]^{2}$ denotes the mean intensity of foreground respectively the background of the segmentation $x \in \mathbb{B}^{n}$.
a) Find an approximate solution of (10) by alternatingly optimizing over x and ω :

$$
\begin{aligned}
& x^{k+1} \in \operatorname{argmin}_{x} E\left(x, \omega^{k}\right), \\
& \omega^{k+1}=\operatorname{argmin}_{\omega} E\left(x^{k+1}, \omega\right) .
\end{aligned}
$$

The optimization problem in x is a 2-region segmentation problem, so reuse your code from the previous exercises. The problem in ω has a simple closed form solution. Use chanvese_alternating.cpp from 10_supp.zip as a start.
b) Compute a global minimizer of (10) using the branch and bound best-first tree search. The search space Ω is the rectangle $[0,255]^{2}$. In your implementation, you can keep a sorted queue of rectangles Ω_{i}, and every iteration remove the rectangle with the smallest lower bound and split it into two smaller rectangles along the longest edge. As a lower bound on (10) use the bound (8) dervied in the theoretical exercise. You can use chanvese_global.cpp as a starting point.

Figure 1: The figure shows the input image and a global minimizer of (10) for parameters $\lambda_{1}=\lambda_{2}=0.0001, \mu=1, \nu=0.1$. The optimal foreground and background colors were found as $c_{f}^{*}=81$ and $c_{b}^{*}=167$.

[^0]
[^0]: ${ }^{1}$ V. Lempitsky, A. Blake, C. Rother, Image Segmentation by Branch-and-Mincut, ECCV 2008
 ${ }^{2}$ T. Chan, L. Vese: Active contours without edges. Trans. Image Process., 10(2), 2001.

