Weekly Exercises 11

Room: 02.09.023
Tuesday, 19.01.2016, 14:15-15:45
Submission deadline: Tuesday, 26.01.2016, 11:15, Room 02.09.023

Fast Trust-Region

Exercise 1 (Bhattacharyya Distance, 3 Points). Let $K=\{1, \ldots, k\}, k \in \mathbb{N}$ and let $\mathcal{D}=\left\{p: K \rightarrow \mathbb{R}_{\geq 0} \mid \sum_{i} p(i)=1\right\}$ be the set of all probability distributions on K. Define the Bhattacharyya distance $D: \mathcal{D} \times \mathcal{D} \rightarrow \mathbb{R}$ by

$$
D(p, q)=-\log \left(\sum_{i} \sqrt{p(i) q(i)}\right) .
$$

1. Show that the Bhattacharyya distance D is symmetric and positive.
2. Show that $D(p, q)=0 \Leftrightarrow p=q$.
3. Give an example where the triangle inequality does not hold for D.

For the next exercise we need the isoperimetric inequality:
Theorem (Isoperimetric Inequality). Consider a closed curve $\alpha \subset \mathbb{R}^{2}$. Let \mathcal{L} be the length of α and let \mathcal{A} be the area of the region enclosed by α. It holds:

$$
4 \pi \mathcal{A} \leq \mathcal{L}^{2}
$$

Equality holds if and only if α is a circle.
Exercise 2 (3 Points). Consider a minimizer $S^{*} \subset \mathbb{R}^{2}$ of the minimization problem

$$
\min _{S \subset \mathbb{R}^{2}}\left(\int_{S} 1 d x-V_{0}\right)^{2}+\mathcal{L}(S)
$$

where $V_{0} \in \mathbb{R}_{>0}$ and $\mathcal{L}(S)$ is the length of the boundary of S.

1. Show that S^{*} is a disk.
2. Show that the radius r^{*} of the disk S^{*} satisfies

$$
r^{*}=\arg \min _{r \geq 0}\left(\pi r^{2}-V_{0}\right)^{2}+2 \pi r
$$

3. Find the optimal radius for $V_{0}=1000$. Hint: Compute the derivative and use your favourite software (e.g. Matlab or Wolfram α) to find the roots of the resulting third-degree polynomial.

Programming

Exercise 3 (Fast Trust Region Method, 10 Points). In this exercise we apply the fast trust region method to find the minimizer of energy function

$$
E(x)=\left(\langle\mathbf{1}, x\rangle-V_{0}\right)^{2}+\mathcal{L}(x),
$$

where $x \in\{0,1\}^{n}$ are binary variables describing a segmentation of a pixel grid. $V_{0}=1000$ and $\mathcal{L}(x)$ is the boundary length of the segmentation.

