Weekly Exercises 11

Room: 02.09.023
Tuesday, 19.01.2016, 14:15-15:45
Submission deadline: Tuesday, 26.01.2016, 11:15, Room 02.09.023

Fast Trust-Region

Exercise 1 (Bhattacharyya Distance, 3 Points). Let $K=\{1, \ldots, k\}, k \in \mathbb{N}$ and let $\mathcal{D}=\left\{p: K \rightarrow \mathbb{R}_{\geq 0} \mid \sum_{i} p(i)=1\right\}$ be the set of all probability distributions on K. Define the Bhattacharyya distance $D: \mathcal{D} \times \mathcal{D} \rightarrow \mathbb{R}$ by

$$
D(p, q)=-\log \left(\sum_{i} \sqrt{p(i) q(i)}\right) .
$$

1. Show that the Bhattacharyya distance D is symmetric and non-negative.
2. Show that $D(p, q)=0 \Leftrightarrow p=q$.
3. Give an example where the triangle inequality does not hold for D.

Solution. 1. Symmetry follows directly from the definition.

$$
\begin{aligned}
\sum_{i} \sqrt{p(i) q(i)} & =\sum_{i} p(i) \sqrt{\frac{q(i)}{p(i)}} \\
& =-\sum_{i} p(i)\left(-\sqrt{\frac{q(i)}{p(i)}}\right) \\
& \leq \sqrt{\sum_{i} p(i) \frac{q(i)}{p(i)}}=\sqrt{\sum_{i} q(i)}=1 .
\end{aligned}
$$

The inequality comes from Jensen's inequality $f\left(\sum_{i} \lambda_{i} x_{i}\right) \leq \sum_{i} \lambda_{i} f\left(x_{i}\right)$, where $f(\cdot)=-\sqrt{ }$ is a convex function. It directly follows that $D(p, q) \geq 0$.
2. If $p=q$ then

$$
\sum_{i} \sqrt{p(i) q(i)}=\sum_{i} \sqrt{p(i)^{2}}=\sum_{i} p(i)=1 .
$$

Therefore $D(p, q)=0$.

If $D(p, q)=0$ then $\sum_{i} \sqrt{p(i) q(i)}=1$. Also

$$
\begin{aligned}
\sum_{i} \sqrt{p(i) q(i)} & =\sum_{i} \sqrt{p(i)} \sqrt{q(i)} \\
& =\langle\sqrt{p}, \sqrt{q}\rangle \\
& \leq \sqrt{\langle\sqrt{p}, \sqrt{p}\rangle} \sqrt{\langle\sqrt{q}, \sqrt{q}\rangle} \\
& =\sqrt{\sum_{i} p(i)} \sqrt{\sum_{i} q(i)}=1 .
\end{aligned}
$$

The inequality is the Cauchy-Schwarz inequality and equality holds if and only if p, q are linear dependent.
3. Let $k=2, x(1)=0.1, x(2)=0.9, y(1)=0.9, y(2)=0.1, z(1)=z(2)=0.5$. We can calculate

$$
\begin{array}{r}
D(x, y)=-\log 2 \sqrt{0.09} \approx 0.2218 \\
D(x, z)=D(z, y)=-\log (\sqrt{0.05}+\sqrt{0.45}) \approx 0.0506
\end{array}
$$

Therefore $D(x, y)>D(x, z)+D(z, y)$.
For the next exercise we need the isoperimetric inequality:
Theorem (Isoperimetric Inequality). Consider a closed curve $\alpha \subset \mathbb{R}^{2}$. Let \mathcal{L} be the length of α and let \mathcal{A} be the area of the region enclosed by α. It holds:

$$
4 \pi \mathcal{A} \leq \mathcal{L}^{2}
$$

Equality holds if and only if α is a circle.
Exercise 2 (3 Points). Consider a minimizer $S^{*} \subset \mathbb{R}^{2}$ of the minimization problem

$$
\min _{S \subset \mathbb{R}^{2}}\left(\int_{S} 1 d x-V_{0}\right)^{2}+\mathcal{L}(S)
$$

where $V_{0} \in \mathbb{R}_{>0}$ and $\mathcal{L}(S)$ is the length of the boundary of S.

1. Show that S^{*} is a disk.
2. Show that the radius r^{*} of the disk S^{*} satisfies

$$
r^{*}=\arg \min _{r \geq 0}\left(\pi r^{2}-V_{0}\right)^{2}+2 \pi r .
$$

3. Find the optimal radius for $V_{0}=1000$. Hint: Compute the derivative and use your favourite software (e.g. Matlab or Wolfram α) to find the roots of the resulting third-degree polynomial.

Solution. 1. Assume S^{*} is not a disk and let T be a disk with the same area $\mathcal{A}(T)=\mathcal{A}\left(S^{*}\right)$. Then

$$
\frac{\mathcal{L}(T)^{2}}{4 \pi}=\mathcal{A}(T)=\mathcal{A}\left(S^{*}\right)<\frac{\mathcal{L}\left(S^{*}\right)^{2}}{4 \pi} .
$$

I.e. $\mathcal{L}(T)<\mathcal{L}\left(S^{2}\right)$ and $\left(\int_{S^{*}} 1 d x-V_{0}\right)^{2}+\mathcal{L}\left(S^{*}\right)=\left(\mathcal{A}\left(S^{*}\right)-V_{0}\right)^{2}+\mathcal{L}\left(S^{*}\right)>$ $\left(\mathcal{A}(T)-V_{0}\right)^{2}+\mathcal{L}(T)$ contradicting the optimality of S^{*}.
2. We can reduce the search space to the space of all disks $S(r)$ parameterized by radius r. Then $\mathcal{A}(S(r))=\pi r^{2}$ and $\mathcal{L}(S(r))=2 \pi r$.
3. The derivative of the optimization function is $4 \pi^{2} r^{3}-4 \pi V_{0} r+2 \pi$. Setting $V_{0}=1000$ it has real roots at $-17.8415,0.0005,17.8415$. The minimum (s.t. $r \geq 0)$ is at $r=17.8415$ and has the value 112.099.

