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Fast Trust-Region (6 Points)
Exercise 1 (Bhattacharyya Distance, 3 Points). Let K = {1, . . . , k}, k ∈ N and let
D = {p : K → R≥0|

∑
i p(i) = 1} be the set of all probability distributions on K.

Define the Bhattacharyya distance D : D ×D → R by

D(p, q) = − log

(∑
i

√
p(i)q(i)

)
.

1. Show that the Bhattacharyya distance D is symmetric and non-negative.

2. Show that D(p, q) = 0⇔ p = q.

3. Give an example where the triangle inequality does not hold for D.

Solution. 1. Symmetry follows directly from the definition.

∑
i

√
p(i)q(i) =

∑
i

p(i)

√
q(i)

p(i)

= −
∑
i

p(i)(−

√
q(i)

p(i)
)

≤
√∑

i

p(i)
q(i)

p(i)
=

√∑
i

q(i) = 1.

The inequality comes from Jensen’s inequality f(
∑

i λixi) ≤
∑

i λif(xi), where
f(·) = −

√
· is a convex function. It directly follows that D(p, q) ≥ 0.

2. If p = q then ∑
i

√
p(i)q(i) =

∑
i

√
p(i)2 =

∑
i

p(i) = 1.

Therefore D(p, q) = 0.
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If D(p, q) = 0 then
∑

i

√
p(i)q(i) = 1. Also∑

i

√
p(i)q(i) =

∑
i

√
p(i)

√
q(i)

= 〈√p,√q〉

≤
√
〈√p,√p〉

√
〈√q,√q〉

=

√∑
i

p(i)

√∑
i

q(i) = 1.

The inequality is the Cauchy-Schwarz inequality and equality holds if and only
if p, q are linear dependent.

3. Let k = 2, x(1) = 0.1, x(2) = 0.9, y(1) = 0.9, y(2) = 0.1, z(1) = z(2) = 0.5.
We can calculate

D(x, y) = − log 2
√
0.09 ≈ 0.2218

D(x, z) = D(z, y) = − log(
√
0.05 +

√
0.45) ≈ 0.0506.

Therefore D(x, y) > D(x, z) +D(z, y).

For the next exercise we need the isoperimetric inequality :

Theorem (Isoperimetric Inequality). Consider a closed curve α ⊂ R2. Let L be
the length of α and let A be the area of the region enclosed by α. It holds:

4πA ≤ L2.

Equality holds if and only if α is a circle.

Exercise 2 (3 Points). Consider a minimizer S∗ ⊂ R2 of the minimization problem

min
S⊂R2

(∫
S

1dx− V0
)2

+ L(S),

where V0 ∈ R>0 and L(S) is the length of the boundary of S.

1. Show that S∗ is a disk.

2. Show that the radius r∗ of the disk S∗ satisfies

r∗ = argmin
r≥0

(
πr2 − V0

)2
+ 2πr.

3. Find the optimal radius for V0 = 1000. Hint: Compute the derivative and use
your favourite software (e.g. Matlab or Wolfram α) to find the roots of the
resulting third-degree polynomial.

2



Solution. 1. Assume S∗ is not a disk and let T be a disk with the same area
A(T ) = A(S∗). Then

L(T )2

4π
= A(T ) = A(S∗) <

L(S∗)2

4π
.

I.e. L(T ) < L(S2) and (
∫
S∗ 1dx − V0)2 + L(S∗) = (A(S∗) − V0)2 + L(S∗) >

(A(T )− V0)2 + L(T ) contradicting the optimality of S∗.

2. We can reduce the search space to the space of all disks S(r) parameterized
by radius r. Then A(S(r)) = πr2 and L(S(r)) = 2πr.

3. The derivative of the optimization function is 4π2r3 − 4πV0r + 2π. Setting
V0 = 1000 it has real roots at −17.8415, 0.0005, 17.8415. The minimum (s.t.
r ≥ 0) is at r = 17.8415 and has the value 112.099.
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