Combinatorial Optimization in Computer Vision (IN2245)

Frank R. Schmidt
Csaba Domokos

Winter Semester 2015/2016

Pseudo-Boolean Function

Given an arbitrary set Ω, we denote the powerset of Ω as $\mathcal{P}(\Omega)$ or 2^{Ω}.
The powerset is the unique set that contains all subsets of Ω.
For two sets $A, B \in \mathcal{P}(\Omega)$, the subset relationship

$$
A \subset B: \Leftrightarrow[\forall i \in A: i \in B]
$$

makes $\mathcal{P}(\Omega)$ a partially ordered set,i.e.,

$$
\begin{aligned}
& A \subset B \text { and } B \subset A \Leftrightarrow A=B \\
& A \subset B \text { and } B \subset C \Rightarrow A \subset C
\end{aligned}
$$

(for all $A, B \in \mathcal{P}(\Omega)$)
(for all $A, B, C \in \mathcal{P}(\Omega)$)
For two subsets $A, B \in \mathcal{P}(\Omega)$, we denote

$$
A \cap B:=\operatorname{meet}(A, B) \quad A \cup B:=\operatorname{join}(A, B)
$$

To each subset $A \in \mathcal{P}(\Omega)$, we can define the characteristic function

$$
\begin{aligned}
\chi_{A}: \Omega & \rightarrow \mathbb{B} \\
i & \mapsto[i \in A]
\end{aligned}
$$

For two characteristic functions χ_{A} and χ_{B}, we can define

$$
\left[\chi_{A} \wedge \chi_{B}\right](i):=\chi_{A}(i) \wedge \chi_{B}(i) \quad\left[\chi_{A} \vee \chi_{B}\right](i):=\chi_{A}(i) \vee \chi_{B}(i)
$$

and we obtain

$$
\chi_{A} \wedge \chi_{B}=\chi_{A \cap B} \quad \chi_{A} \vee \chi_{B}=\chi_{A \cup B}
$$

The partial ordering of $\mathcal{P}(\Omega)$ is induced by the total ordering of \mathbb{B}.
If we replace \mathbb{B} with a totally ordered set \mathcal{L}, wie can replace $\mathcal{P}(\Omega)$ with \mathcal{L}^{Ω}.

2. Pseudo-Boolean Optimization

A Boolean variable $x \in \mathbb{B}$ can either be true or false.
To simplify the notation, we denote the Boolean set as $\mathbb{B}:=\{0,1\}$. Here, 0 and 1 are identified with false and true respectively.
\mathbb{B} forms a totally ordered set,i.e.,

$$
\begin{array}{cl}
x \leqslant y \text { and } y \leqslant x \Leftrightarrow x=y & \\
x \leqslant y \text { and } y \leqslant z \Rightarrow x \leqslant z & \text { (for all } x, y \in \mathbb{B}) \\
x \leqslant y \text { or } y \leqslant x & \\
\quad \text { (for all } x, y, z \in \mathbb{B}) \\
x, y \in \mathbb{B})
\end{array}
$$

For two Boolean variables $x, y \in \mathbb{B}$, we denote

$$
x \wedge y:=\min \{x, y\} \quad x \vee y:=\max \{x, y\}
$$

IN2245 - Combinatorial Optimization in Computer Vision

Note that for $A, B \in \mathcal{P}(\Omega)$, meet (A, B) is defined as the maximal lower bound of
A and B,i.e., $\operatorname{meet}(A, B)$ is the $C \in \mathcal{P}(\Omega)$ such that

- C is a lower bound,i.e., $C \subset A$ and $C \subset B$.
- For all other lower bounds $D, D \subset C$ holds.

One can show that \cap and \cup coincides with the classial notion of union and intersection:

$$
\begin{aligned}
& A \cup B=\{i \in \Omega \mid i \in A \text { or } i \in B\} \\
& A \cap B=\{i \in \Omega \mid i \in A \text { and } i \in B\}
\end{aligned}
$$

Boolean Function

A Boolean function $E: 2^{\Omega} \rightarrow \mathbb{B}$ assigns to every subset $A \subset \Omega$ a Boolean value $E(A)$.

One can use a Boolean function in order to test certain properties:

$$
\begin{aligned}
& E_{1}(A)=[A \neq \varnothing] \\
& E_{2}(A)=[A \text { is connected }] \\
& E_{3}(A)=[A \text { is a square }] \\
& E_{4}(A)=[A \text { is almost circular }]
\end{aligned}
$$

In Computer Vision, we are usually interested in problems that are beyond a pure satisfiability test.

We are not interested whether A is almost circular. Instead, we would like to evaluate some sort of dissimilarity measure between A and a perfect disc.

Pseudo-Boolean Function Submodularity Lovász Extension
A pseudo-Boolean function $E: 2^{\Omega} \rightarrow \mathbb{R}$ assigns to every subset $A \subset \Omega$ a real value $E(A)$.

In the following, we will identify a subset $A \subset \Omega$ with its characteristic function $\chi_{A}: \Omega \rightarrow \mathbb{B}$. For disjoint sets A and B, we will write $A+B:=A \cup B$ and for subsets $S \subset T$, we will write $T-S:=T \backslash S$.

Since sets are identified with binary functions, we may also refer to E as a functional. In the literature, one usually talks about E as a function if Ω is a finite set. E is referred to as a functional if Ω is a continuous set
(real-valued vector spaces, finite-dimensional manifolds, etc.).
In this lecture, we will only consider finite sets Ω.
See Variational Methods for Computer Vision for functional-driven optimization methods.

Segmenting an image can be cast as minimizing the energy

$$
E_{\text {Data }}(A)=\sum_{i \in A} f(i)
$$

It is common to combine it with a length term

$$
E_{\text {Length }}(A)=\sum_{i \in A} \sum_{\substack{j \neq A,|i-j|=1}} 1
$$

IN2245 - Combinatorial Optimization in Computer Vision

2. Pseudo-Boolean Optimization - 11 / 34

The minimization of a pseudo-Boolean function $E: 2^{\Omega} \rightarrow \mathbb{R}($ with $E(\varnothing)=0)$ becomes very easy, if E is modular, i.e.,

$$
E(A \cup B)+E(A \cap B)=E(A)+E(B) \quad \text { (for all } A, B \in 2^{\Omega} \text {) }
$$

For disjoint $A, B \in 2^{\Omega}$, we have $E(A+B)=E(A)+E(B)$, which implies

$$
E(A)=\sum_{i \in A} E(\{i\})
$$

A global minimizer of the modular function E is therefore

$$
A=\{i \in \Omega \mid E(\{i\})<0\}
$$

and it can be found in $\mathcal{O}(N)$ time, where $N:=|\Omega|$ is the cardinality of Ω.

IN2245 - Combinatorial Optimization in Computer Vision
2. Pseudo-Boolean Optimization - 14 / 34

04

(if) Submodularity w.r.t. 2 Variables
Pseudo-Boolean Function Submodularity Lovász Extension Multilinear Extension

Let $E: 2^{\Omega} \rightarrow \mathbb{R}$ be submodular and let $S \in 2^{\Omega}$ and $i, j \in \Omega-S$. Then

$$
\begin{equation*}
E(S+\{i, j\})+E(S) \leqslant E(S+\{i\})+E(S+\{j\}) \tag{1}
\end{equation*}
$$

If we define $E_{2}: \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{R}$ via $E_{2}\left(b_{1}, b_{2}\right):=E\left(S+b_{1} \cdot\{i\}+b_{2} \cdot\{j\}\right)$, we can rewrite (1) as

$$
\begin{equation*}
E_{2}(1,1)+E_{2}(0,0) \leqslant E_{2}(1,0)+E_{2}(0,1) \tag{2}
\end{equation*}
$$

If for a pseudo-Boolean function $E: 2^{\Omega} \rightarrow \mathbb{R}$, the Equation (1) is satisfied for all S, i, j, the energy E is in fact submodular. Some authors use therefore (2) as definition for submodularity.
$E_{\text {Length }}: 2^{\Omega} \rightarrow \mathbb{R}$ is submodular and $E_{\text {Data }}: 2^{\Omega} \rightarrow \mathbb{R}$ is modular.
Iff $E: 2^{\Omega} \rightarrow \mathbb{R}$ is a supermodular function, then $-E: 2^{\Omega} \rightarrow \mathbb{R}$ is submodular.
If $E: 2^{\Omega} \rightarrow \mathbb{R}$ is submodular, $T \subset \Omega$, then $E \mid T: 2^{\Omega} \rightarrow \mathbb{R}$ is submodular with

$$
E \mid T(A):=E(T \cap A) .
$$

If $H: \mathbb{R} \rightarrow \mathbb{R}$ is a concave function, then $E_{H}: 2^{\Omega} \rightarrow \mathbb{R}$ is submodular with

$$
E_{H}(A):=H(|A|) .
$$

Theorem 1. Convex closure E^{-}of a pseudo-Boolean function E is convex.
Proof. Let $x^{0}, x^{1} \in[0,1]^{N}, \lambda \in[0,1]$ and $x^{\lambda}:=(1-\lambda) \cdot x^{0}+\lambda \cdot x^{1}$. We have to show that $E^{-}\left(x^{\lambda}\right) \leqslant(1-\lambda) E^{-}\left(x^{0}\right)+\lambda E^{-}\left(x^{1}\right)$. We have

$$
\begin{aligned}
E^{-}\left(x^{0}\right) & =\sum_{S \subset \Omega} \alpha_{S}^{0} \cdot E(S) & x^{0} & =\sum_{S \subset \Omega} \alpha_{S}^{0} \cdot S \\
E^{-}\left(x^{1}\right) & =\sum_{S \subset \Omega} \alpha_{S}^{1} \cdot E(S) & x^{1} & =\sum_{S \subset \Omega} \alpha_{S}^{1} \cdot S
\end{aligned}
$$

Defining $\alpha_{S}^{\lambda}:=(1-\lambda) \cdot \alpha_{S}^{0}+\lambda \cdot \alpha_{S}^{1}$, we obtain

$$
E^{-}\left(x^{\lambda}\right) \leqslant \sum_{S \subset \Omega} \alpha_{S}^{\lambda} \cdot E(S)=(1-\lambda) E^{-}\left(x^{0}\right)+\lambda E^{-}\left(x^{1}\right)
$$

IN2245 - Combinatorial Optimization in Computer Vision

2. Pseudo-Boolean Optimization -21 / 34

In general, it may take exponential time in order to evaluate E^{-}
The Lovász extension on the other hand can be computed in linear time

$$
\begin{aligned}
& E^{L}(x)=\sum_{n=0}^{k} \alpha_{n} \cdot E\left(S_{n}\right) \quad \text { for } x=\sum_{n=0}^{k} \alpha_{n} \cdot S_{n} \\
& \sum_{n=0}^{k} \alpha_{n}=1, \alpha_{n}>0 \\
& \varnothing \subset S_{0} \subsetneq \ldots \subsetneq S_{k} \subset \Omega
\end{aligned}
$$

Example 1. Let $\Omega=\{i, j\}, E: \mathbb{B}^{\Omega} \rightarrow \mathbb{R}$ a pseudo-Boolean function and $f=(0.1,0.6)$. Then we have

$$
\begin{array}{r}
S_{0}=\varnothing ; \quad S_{1}=\{j\} ; \quad S_{2}=\{i, j\} \\
E^{L}(x)=0.4 \cdot E\left(S_{0}\right)+0.5 \cdot E\left(S_{1}\right)+0.1 \cdot E\left(S_{2}\right)
\end{array}
$$

Weighted Contour Length $(w<0)$
The weighted contour length with negative weights is a supermodular energy.
Minimizing the length is equivalent to
maximizing the cut with positive weights.
The Maximum Cut problem is NP hard.
Thus, minimizing a supermodular function is in general NP hard.

IN2245 - Combinatorial Optimization in Computer Vision

In order to analyze a pseudo-Boolean function $E: \mathbb{B}^{\Omega} \rightarrow \mathbb{R}$, one can extend it to a function $\bar{E}:[0,1]^{\Omega} \rightarrow \mathbb{R}$ such that $\bar{E} \mid \mathbb{B}^{\Omega}=E$.

Using a specific total ordering $<$ of the $N \in \mathbb{N}$ elements in Ω

$$
i_{1}<i_{2}<\ldots<i_{N}
$$

we can write $E: \mathbb{B}^{N} \rightarrow \mathbb{R}$ and $\bar{E}:[0,1]^{N} \rightarrow \mathbb{R}$.
The convex closure $E^{-}:[0,1]^{N} \rightarrow \mathbb{R}$ is defined as

$$
E^{-}(x)=\min \left\{\sum_{S \subset \Omega} \alpha_{S} \cdot E(S) \mid x=\sum_{S \subset \Omega} \alpha_{S} \cdot S, \sum_{S \subset \Omega} \alpha_{S}=1, \alpha_{S} \geqslant 0\right\} .
$$

Note that E^{-}is piecewise linear and hence non-differentiable.

IN2245 - Combinatorial Optimization in Computer Vision
2. Pseudo-Boolean Optimization - 20 / 34

Assume, we have $\Omega=\{i, j\}$ and the pseudo-Boolean function $E: 2^{\Omega} \rightarrow \mathbb{R}$

$$
E(\varnothing)=E(\{i\})=E(\{j\})=0 \quad E(\{i, j\})=\alpha \in \mathbb{R}
$$

E is submodular for $\alpha \leqslant 0$ and supermodular for $\alpha \geqslant 0$.
The convex extension E^{-}is different for $\alpha<0$ resp. $\alpha>0$.

IN2245 - Combinatorial Optimization in Computer Vision
2. Pseudo-Boolean Optimization - 22 / 34

Theorem 2. Let $x \in[0,1]^{N}$. Then there is a $k \leqslant N$, a chain
$\varnothing \subset S_{0} \subsetneq \ldots \subsetneq S_{k} \subset \Omega$ and $\alpha_{0}, \ldots, \alpha_{k}>0$ such that $\sum_{n=0}^{k} \alpha_{n}=1$ and $x=\sum_{n=0}^{k} \alpha_{n} S_{n}$. This representation is unique.
Proof. Induction over $|X|, X=\left\{x_{n} \mid x_{n}>0\right\}$. We will prove $k=|X| \leqslant N$.
Base Case: Assume that $|X|=0$.
$X=\varnothing$ implies $x=0$. We have uniquely $k=0, S_{0}=\varnothing$ and $\alpha_{0}=1$.
Inductive Step: Assume the theorem is true for all x^{\prime} with $\left|X^{\prime}\right|<|X|$.
The biggest set S_{k} has to be $\left\{n \mid x_{n}>0\right\}$ and we have to choose $\alpha_{k}=\min X$. Otherwise, x is not representable as a convex combination. Let now $x^{\prime}:=x-\alpha_{k} S_{k}$. For the set X^{\prime}, we have $\left|X^{\prime}\right| \leqslant|X|-1$.
Therefore, there exists a unique representation $x^{\prime}=\sum_{n=0}^{k-1} \alpha_{n}^{\prime} S_{n}^{\prime}$.
Since $\max X^{\prime} \leqslant 1-\alpha_{k}$, we have $S_{0}^{\prime}=\varnothing$ and $\alpha_{0}^{\prime} \geqslant \alpha_{k}$. Setting $\alpha_{0}=\alpha_{0}^{\prime}-\alpha_{k}$, $\alpha_{n}=\alpha_{n}^{\prime}$ for $0<n<k$ and $S_{n}=S_{n}^{\prime}$ for $0 \leqslant n<k$ provides us with the unique representation for x.

Theorem 3. A pseudo-Boolean function E is submodular iff $E^{-}=E^{L}$
Proof.
Case 1: E is not submodular
Then, there exist $S \subset \Omega$ and $i, j \in \Omega-S$ such that

$$
E(S+\{i, j\})+E(S)>E(S+\{i\})+E(S+\{j\})
$$

If we choose $x=S+\frac{1}{2}\{i\}+\frac{1}{2}\{j\}$, we have

$$
\begin{aligned}
& E^{L}(x)=\frac{1}{2}(E(S+\{i, j\})+E(S)) \\
& E^{-}(x) \leqslant \frac{1}{2}(E(S+\{i\})+E(S+\{j\}))
\end{aligned}
$$

and therefore $E^{L} \neq E^{-}$.

Proof (cont.).
Case 2: E is submodular.
Let $x \in[0,1]^{N}$ with $|\Omega|=N$ and

$$
\mathcal{A}=\left\{\left(\alpha_{S}\right)_{S \subset \Omega} \mid x=\sum_{S \subset \Omega} \alpha_{S} \cdot S, \sum_{S \subset \Omega} \alpha_{S}=1, E^{-}(x)=\sum_{S \subset \Omega} \alpha_{S} E(S)\right\} .
$$

We choose an $\boldsymbol{\alpha} \in \mathcal{A}$ that maximizes $\sum_{S \subset \Omega} \alpha_{S} \cdot|S|^{2}$. We have to prove that the α_{S} are only positive for sets that are subsets from one another. Assume that there are $S, T \subset \Omega$ with $\alpha_{S} \geqslant \alpha_{T}>0$ and $|S \backslash T|,|T \backslash S|>0$. Replacing $\alpha_{T}(S+T)$ with $\alpha_{T}(S \cap T+S \cup T)$ does not increase the energy due to submodularity, but

$$
|S \cap T|^{2}+|S \cup T|^{2}=|S|^{2}+|T|^{2}+2|S \backslash T| \cdot|T \backslash S|>|S|^{2}+|T|^{2},
$$

which contradicts the choice of α.
IN2245 - Combinatorial Optimization in Computer Vision \quad 2. Pseudo-Boolean Optimization - 26 / 34

Multilinear Extension

[Grötschel, Lovász, Schrijver:The ellipsoid method and its consequences in combinatorial optimization, Combinatorica 1 (1981)]
"The algorithm [...] is based on the ellipsoid method, and uses therefore a heavy framework of division, rounding, and approximation; moreover, it is not practical."
A. Schrijver, 2000

Schrijver's new method takes $\mathcal{O}\left(N^{5}\right)$ iterations. In each iteration, an $N \times N$ matrix has to be inverted

IN2245 - Combinatorial Optimization in Computer Vision
2. Pseudo-Boolean Optimization - 27 / 34

Another extension of a pseudo-Boolean function $E: \mathbb{B}^{N} \rightarrow \mathbb{R}$ is the multilinear extension $\bar{E}:[0,1]^{N} \rightarrow \mathbb{R}$.
It makes use of the fact that for a given set $A \subset \Omega$ the function

$$
\begin{aligned}
F: \mathbb{B}^{N} & \rightarrow \mathbb{R} \\
\left(x_{1}, \ldots, x_{n}\right) & \mapsto \prod_{i \in A} x_{i} \prod_{i \notin A}\left(1-x_{i}\right)
\end{aligned}
$$

satisfies

$$
F(S)= \begin{cases}1 & \text { if } S=A \\ 0 & \text { otherwise }\end{cases}
$$

The multilinear extension \bar{E} is defined via

$$
\bar{E}\left(x_{1}, \ldots, x_{n}\right):=\sum_{A \subset \Omega} E(A) \cdot \prod_{i \in A} x_{i} \prod_{i \notin A}\left(1-x_{i}\right)
$$

IN2245 - Combinatorial Optimization in Computer Vision

Theorem 4. Iff E is submodular, we have $\frac{\partial^{2} \bar{E}}{\partial x_{i} \partial x_{j}} \leqslant 0$ for all x_{i}, x_{j}.
Proof. We have

$$
\begin{aligned}
\frac{\partial \bar{E}}{\partial x_{i}} & =\sum_{A \subset \Omega} E(A) \frac{\partial}{\partial x_{i}}\left[\prod_{j \in A} x_{j} \prod_{j \notin A} \bar{x}_{j}\right] \\
& =\sum_{i \in A \subset \Omega} E(A)\left[\prod_{j \in A, j \neq i} x_{j} \prod_{j \notin A} \bar{x}_{j}\right]-\sum_{i \notin A \subset \Omega} E(A)\left[\prod_{j \in A} x_{j} \prod_{j \notin A, j \neq i} \bar{x}_{j}\right] \\
& =\bar{E}\left(x_{1}, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_{n}\right)-\bar{E}\left(x_{1}, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_{n}\right) \\
& =\sum_{A \subset(\Omega \backslash\{i\})}[E(A+i)-E(A)]\left[\prod_{j \in A} x_{j} \prod_{j \notin A} \bar{x}_{j}\right]
\end{aligned}
$$

For submodular functions E, we saw

1. The Lovász extension E^{L} can be evaluated in polynomial time.
2. Since $E^{L}=E^{-}$, we can minimize E^{L} in polynomial time.
3. Since E^{L} is piecewise linear, the minimum is been taken at its boundary.

Therefore, the minimum of E^{L} is been taken by a set $S \subset \Omega$.

Consider the pseudo-Boolean function $E: \mathbb{B}^{3} \rightarrow \mathbb{R}$

and its extension $\bar{E}:[0,1]^{N} \rightarrow \mathbb{R}$:

$$
\bar{E}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}\left(1-x_{2}\right)\left(1-x_{3}\right)+x_{1}\left(1-x_{2}\right) x_{3}+x_{1} x_{2}\left(1-x_{3}\right) .
$$

Using the notation $\bar{x}:=(1-x)$, we can write \bar{E} as

$$
\begin{aligned}
\bar{E}\left(x_{1}, x_{2}, x_{3}\right) & =x_{1} \bar{x}_{2} \bar{x}_{3}+x_{1} \bar{x}_{2} x_{3}+x_{1} x_{2} \bar{x}_{3} \\
& =x_{1}\left(1-x_{2} x_{3}\right)
\end{aligned}
$$

IN2245 - Combinatorial Optimization in Computer Vision
2. Pseudo-Boolean Optimization - 30 / 34

Second Derivatives
Pseudo-Boolean Function Submodularity Lovász Extension
Multilinear Extension
Proof (Cont.). For the second derivatives we get

$$
\begin{aligned}
& \frac{\partial^{2} \bar{E}}{\partial x_{j} \partial x_{i}}= \frac{\partial}{\partial x_{j}} \sum_{A \subset(\Omega \backslash\{i\})}[E(A+i)-E(A)]\left[\prod_{k \in A} x_{k} \prod_{k \notin A} \bar{x}_{k}\right] \\
&= \sum_{A \subset(\Omega \backslash\{i, j\})}[(E(A+i+j)-E(A+j))-(E(A+i)-E(A))] . \\
& \cdot\left[\prod_{j \in A} x_{j} \prod_{j \notin A} \bar{x}_{j}\right]
\end{aligned}
$$

It follows that E is submodular iff $\frac{\partial^{2} \bar{E}}{\partial x_{j} \partial x_{i}} \leqslant 0$.
$E: \mathbb{B}^{N} \rightarrow \mathbb{R}$ can be uniquely written as a multi-linear function

$$
E(x)=\sum_{i=1}^{K} c_{i} \cdot \prod_{j \in \mathcal{C}_{i}} x_{j}
$$

where $c_{i} \in \mathbb{R}$ and $\mathcal{C}_{i} \subset \Omega$. We call \mathcal{C}_{i} a clique. If the multi-linear function only contains cliques of size $\left|\mathcal{C}_{i}\right| \leqslant 2$, we call it a quadratic function.

We refer to Ω as the set of variables. The set $\mathcal{L}=\{x \mid x \in \Omega\} \sqcup\{\bar{x} \mid x \in \Omega\}$ is called the set of literals. Any pseudo-Boolean function $E: \mathbb{B} \rightarrow \mathbb{R}$ can be written as a posiform

$$
E(x)=\sum_{i=1}^{K} c_{i} \cdot \prod_{j \in \mathcal{C}_{i}} x_{j}+C_{0}
$$

where $c_{i}>0, C_{0} \in \mathbb{R}$ and $\mathcal{C}_{i} \subset \mathcal{L}$. This representation is not unique.

Pseudo Boolean Optimization

- Boros and Hammer, Pseudo-Boolean Optimization, 2002, Discrete Applied Mathematics (123), 155-225.

Submodularity

- Edmonds, Submodular Functions, Matroids, and Certain Polyhedra, 1970, Combinatorial structures and their applications, 69-87.
- Boros and Hammer, Pseudo-Boolean Optimization, 2002, Discrete Applied Mathematics (123), 155-225
- Schrijver, Combinatorial Optimization, Chapters 44-45.

