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Given an arbitrary set €2, we denote the powerset of £ as P(£2) or 22,
The powerset is the unique set that contains all subsets of €.

For two sets A, B € P(2), the subset relationship
Ac B:e|Vie A:ie B]
makes P({2) a partially ordered set,i.e.,

AcBand Bc A< A=B
AcBand BcC=Ac(C

(for all A,BeP())
(for all A, B,C € P(Q))

For two subsets A, B € P(£2), we denote

AN B:=meet(A, B) AU B :=join(A, B)
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To each subset A € P(Q), we can define the characteristic function

x4 :Q—-B
i—[ie A]

For two characteristic functions x4 and xp, we can define

[xa A xB](i) :==xa(i) A x5(i) [xa v xB](i) :==xa(i) v x5(i)
and we obtain
XA N XB = XAnB XAV XB = XAuB

The partial ordering of P(12) is induced by the total ordering of B.

If we replace B with a totally ordered set £, wie can replace P(£2) with £,
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2. Pseudo-Boolean Optimization

Boolean'Variables
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A Boolean variable x € B can either be true or false.

To simplify the notation, we denote the Boolean set as B := {0, 1}.
Here, 0 and 1 are identified with false and true respectively.

B forms a totally ordered set,i.e.,

<y y<rer=/ (for all z,y € B)

<
r<y 1 z (for all z,y, z € B)
(for all z,y € B)

For two Boolean variables x,y € B, we denote

z Ay :=min{z,y} z vy :=max{x,y}
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Note that for A, B € P(f2), meet(A, B) is defined as the maximal lower bound of
A and B,i.e., meet(A, B) is the C' € P(Q) such that

m Cis a lower bound,i.e., C < A and C < B.
m  For all other lower bounds D, D < C holds.

One can show that n and U coincides with the classial notion of union and
intersection:

AuB={icQlic Aoric B}
AnB={ieQlie Aand i€ B}
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A Boolean function E : 2 — B assigns to every subset A — Q a Boolean value
E(A).

One can use a Boolean function in order to test certain properties:

A) =[A+ ]
A) =[A is connected]
A

Ey(
E(
E3(
Ey(

[
A) =[A is a square]
[A is almost circular]

In Computer Vision, we are usually interested in problems that are beyond a pure
satisfiability test.

We are not interested whether A is almost circular. Instead, we would like to
evaluate some sort of dissimilarity measure between A and a perfect disc.
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Pseudo-Boolean Optimization
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A pseudo-Boolean function E : 2% — R assigns to every subset A c § a real
value E(A).

In the following, we will identify a subset A — 2 with its characteristic function
x4 : 2 — B. For disjoint sets A and B, we will write A+ B := AU B and for
subsets S < T, we will write T' — S := T\ S.

Since sets are identified with binary functions, we may also refer to E as a
functional. In the literature, one usually talks about E as a function if Q is a finite
set. I is referred to as a functional if  is a continuous set

(real-valued vector spaces, finite-dimensional manifolds, etc.).

In this lecture, we will only consider finite sets 2.
See Variational Methods for Computer Vision for functional-driven optimization
methods.

Binary_Image’Segmentation
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Data Term Length Term
Segmenting an image can be cast as minimizing the energy
Eoata(4) = Y £6)
ieA
It is common to combine it with a length term

ELength(A) = Z 2 1

€A j¢A,
li=jl=1
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Submodularity

Submodularity:and Supermodularity
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Most Computer Vision problems can be cast as the minimization of a
pseudo-Boolean function E : 22 — R.

Given E : 22 — R, we are interested in the global minimum mingcq E(A) and in
one of its global minimizers A € argmin E,

argmin F := {A < Q|E(A4) < E(B) for all Bc Q}.

Since Q is finite, we know that argmin £ is not empty, but in general it may
contain more than one global minimizer.

If the computation of a global minimizer is NP-hard, we are also satisfied with an
approximation. A set S <  is called an (1 + ¢)-approximation of argmin F, if the
following holds

B(S) < (1+¢) - min B(4).

Binary Image’ Segmentation
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Given Image Minimizing Data Term Minimizing Data + Length Term

argmin F(A) = argmin Z fo(@) + 2 f1(2) + length(A)
A= A= eqma icA

=argmin 3, fo(i) + Y [f1(0) — fo()] + length(4)

i€Q) i€A —fG)

= argmin Z (i) + length(A)
AR Gea

We will show that this energy can be minimized in polynomial time.
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Modular ‘Functions
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The minimization of a pseudo-Boolean function E: 2% — R (with E() = 0)
becomes very easy, if E' is modular,i.e.,

E(AUB)+ E(An B) = E(A) + E(B) (for all A, B e 2%)

For disjoint A, B € 2%, we have E(A + B) = E(A) + E(B), which implies

E(A) = ) B({i}).

i€A

A global minimizer of the modular function E is therefore
A={ieQE{i}) <0}

and it can be found in O(N) time, where N := |Q] is the cardinality of €.
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A pseudo-Boolean function E: 2% — R is called submodular if

E(AUB)+ E(An B) < E(A) + E(B) (for all A, B € 2%)

A pseudo-Boolean function E: 29 — R is called supermodular if

E(AU B)+ E(AnB) > E(A) + E(B) (for all A, B € 2%)

Modular functions are submodular and supermodular. Modular, sub- and
supermodular functions are closed w.r.t. summation and positive scaling.

Minimizing an arbitrary submodular functions can be done in polynomial
time [Grotschel, Lovész, Schrijver, 1981].

The minimization of supermodular functions is NP-hard.

Let E: 22 — R be submodular and let S € 22 and 4,5 € Q — S. Then
BE(S +{i,3}) + B(9) < E(S + {i}) + E(S + {j})- )
If we define F2: B x B — R via Ea(by,b2) := E(S + by - {i} + b2 - {j}), we can
rewrite (1) as
E»(1,1) + E2(0,0) < E»(1,0) + E»(0,1) (2)
If for a pseudo-Boolean function E: 2 — R, the Equation (1) is satisfied for all

S,i,7, the energy E is in fact submodular. Some authors use therefore (2) as
definition for submodularity.

2. Pseudo-Boolean Optimizati
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Elength: 22 _ R is submodular and Epata: 2 — R is modular.

IffE: 22 > Risa supermodular function, then —E: 22 _, R is submodular.

If E: 2% — R is submodular, T < Q, then E|T: 2 — R is submodular with

Weighted Contour Length (w < 0)

E|T(4) := E(T n 4). The weighted contour length with negative weights is a supermodular energy.

Minimizing the length is equivalent to

If H: R — R is a concave function, then Ej: 2% — R is submodular with o . o ;
maximizing the cut with positive weights.

Ey(A) = H(|A]).
1(4) (4D The Maximum Cut problem is NP hard.

Thus, minimizing a supermodular function is in general NP hard.
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In order to analyze a pseudo-Boolean function E: B — R, one can extend it to a
function E: [0,1]® — R such that E|B® = E.

Using a specific total ordering < of the V € N elements in
Lovasz Extension i<z <... <N,

we can write £ : BY - Rand E: [0,1]Y - R,

The convex closure E~: [0,1]Y — R is defined as

T = ZaS~S,ZaS:1,as>O}.

ScQ ScQ

E~(z) = min{ Z ag - E(S)

Sc

Note that E~ is piecewise linear and hence non-differentiable.

Computer

Convex Closure hi Convex: Closure (N=2)
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Theorem 1. Convex closure E~ of a pseudo-Boolean function E is convex. {} {i, 5} {5} {i, 5} {5} {i, 5}
N A 0 1 ° °

Proof. Let 2%, 21 € [0,1]V, A€ [0,1] and z* := (1 — A) - 2% + X - 1. We have to
show that E~(2*) < (1 — A)E~(2°) + AE~(2!). We have

E~ () = ZQOS-E(S) 20 = Zag-S ° e . .

ph ph 0 @ W i)
E- (xl) - Z aé, -E(S) 2l = Z aé, .S Discrete Energy F£ E~ for submodular £ E for supermodular E

Sc Sc
Assume, we have Q = {4, j} and the pseudo-Boolean function E : 2? — R

BE(@) = E({i}) = E({j}) =0 E({i.j}) =acR

Defining a% := (1 — A) - a2 + X - a}, we obtain

E~ (@) < ), a8 E(S) = (1= NE (2°) + A\E~(a)
ScQ E is submodular for a < 0 and supermodular for a > 0.

The convex extension E~ is different for @ < 0 resp. a > 0.
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In general, it may take exponential time in order to evaluate £~ Theorem 2. Let z € [0,1|N. Then there is a k < N, a chain
FcSoS...E S, Qandag,...,ar >0 such thatZ’szoan =1 and

The Lovasz extension on the other hand can be computed in linear time = meo nS,. This representation is unique.

El(x) = i an - E(Sh) for & — i a, - S, Proof. Induction over | X|, X = {z,|z, > 0}. We will prove k = | X| < N.
n=0 n=0 Base Case: Assume that |X|=0.
k X = & implies © = 0. We have uniquely k =0, Sy = & and ap = 1.
Z an =10, >0 Inductive Step: Assume the theorem is true for all 2’ with | X'| < |X|.
n=0 The biggest set Sy has to be {n|z, > 0} and we have to choose o = min X.
FcSHc...g5cQ Otherwise, x is not representable as a convex combination. Let now
o ) z’ :=x — aySk. For the set X/, we have | X'| < |X| - 1.
Example 1. Let © = {i, j}, 7: B — R a pseudo-Boolean function and Therefore, there exists a unique representation o' = Y¥ 1 o/ 5.
f=1(0.1,0.6). Then we have Since max X’ < 1 — oy, we have S = &J and o, > ay. Setting ap = af) — o,
So= g Si—={h S —{ij} an =aj, for0<n<kand S, =5 for 0 <n <k provides us with the unique

representation for x.
E(z) = 0.4- E(Sp) +0.5- E(Sy) +0.1- E(Ss)
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Theorem 3. A pseudo-Boolean function E is submodular iff E= = EL.

Proof.

Case 1: FE is not submodular.
Then, there exist S < Q2 and i,j € Q — S such that

E(S+{i,j}) + E(S) > E(S+ {i}) + E(S + {j})

If we choose = = S + 3{i} + 1{j}, we have

E(2) =5 (B(S + {i.4}) + E(S))

E7 () <5 (B(S + {i}) + E(S + {7}))

DO =N =

and therefore EL + F—.

Proof (cont.).

Case 2: F is submodular.
Let z € [0, 1] with |Q] = N and

T = Z ag - S, Z as =1,E"(z) = Z asE(S)}.

A= {(as)scn
ScQ ScQ ScQ

We choose an @ € A that maximizes g @s - |S|>. We have to prove that the
ag are only positive for sets that are subsets from one another. Assume that
there are S, T < Q with ag = ap > 0 and |S\T|, [T\S| > 0. Replacing

ar(S +T) with ar(S nT + .5 U T) does not increase the energy due to
submodularity, but

[SATPE+]SoTP =[S+ |T)? +2|S\T| - |T\S| > |S|> + |T|?,

which contradicts the choice of a.
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Submodularity

For submodular functions E, we saw

1. The Lovész extension EX can be evaluated in polynomial time.

2. Since EL = E~, we can minimize E* in polynomial time.

3. Since E” is piecewise linear, the minimum is been taken at its boundary.
Therefore, the minimum of EL is been taken by a set S < Q.

[Grétschel, Lovész, Schrijver: The ellipsoid method and its consequences in
combinatorial optimization, Combinatorica 1 (1981)]

"The algorithm [...] is based on the ellipsoid method, and uses
therefore a heavy framework of division, rounding, and approximation;
moreover, it is not practical.”

A. Schrijver, 2000

Schrijver's new method takes O(N?) iterations. In each iteration, an N x N
matrix has to be inverted.

Multilinear Extension
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Another extension of a pseudo-Boolean function E : BN — R is the multilinear
extension £ : [0,1]Y — R.
It makes use of the fact that for a given set A  Q the function

F:BY >R

(w1,...,@n) HHIZH(I — ;)

€A igA
satisfies

F(S):{l ifS=A

0 otherwise

The multilinear extension E is defined via

B(xy,..oxn) = Y BA) - [ [a [ [(1—a)

AcQ €A igA
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Second Derivatives
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Multilinear Extension

Muiltilinear Extension (Example)
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Consider the pseudo-Boolean function E : B3 — R

7y @3 @3 | E(wi,@3,73)
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

and its extension E: [0,1]Y — R:
E(w1,29,73) = 21(1 — 22)(1 — 23) + 21(1 — 2)23 + T122(1 — 23).
Using the notation 7 := (1 — ), we can write £ as

E(xy1, 22, 03) =11T2T3 + 1723 + T122T3

=T (1 - Zzzg)
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Pseudo-Boolean Function

Theorem 4. Iff E is submodular, we have % <0 for all z;, x;.
0T

Proof. We have

o 0

—=ZE(A>—[ z; x]

(?Il‘ AcQ 611 g ;I;I4
= Z E(A)|: 1_[ I]'Hi]':|— Z E(A) [HIJ 1_[ f]':|
i€AcQ jeAj#i jEA igAcQ JeA  jgAj#i
=E(z1, ..z, Lwig, o 2n) — B, im1,0, 2000, )
= > [B(A+i) - B(4)] ijl‘[@]
Ac(Q\{i}) JEA  jgA

Proof (Cont.).
PPy
6x]-6xi _&vj Ac

(\fih)
= 2

(E(A+i+])—B(A+)) - (B(A+1i) — E(A))]
Ac(Q\{ig})

ey

jeA  jgA

For the second derivatives we get

[B(A+ i) - E(A)] [1_[ o ] ] ik]

keA  kgA

°E
Oxj0x;

It follows that F is submodular iff <0.

Pseudo-Boolean Opt
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E: BN — R can be uniquely written as a multi-linear function L
Pseudo Boolean Optimization

K
E(z) = i+ H zj, B Boros and Hammer, Pseudo-Boolean Optimization, 2002, Discrete Applied
1

im Mathematics (123), 155-225.

JeC;

where ¢; € R and C; < 2. We call C; a clique. If the multi-linear function only Submodularity

contains cliques of size |Ci| < 2, we call it a quadratic function. m  Edmonds, Submodular Functions, Matroids, and Certain Polyhedra, 1970,
Combinatorial structures and their applications, 69-87.

B Boros and Hammer, Pseudo-Boolean Optimization, 2002, Discrete Applied
Mathematics (123), 155-225.

W Schrijver, Combinatorial Optimization, Chapters 44—45.

We refer to ) as the set of variables. The set £ = {z|z € Q} L {Z|z € Q} is called
the set of literals. Any pseudo-Boolean function E: B — R can be written as a
posiform

K
E(QS) = ZCZ" H$j+00,
i=1 je€Ci

where ¢; > 0, Cp € R and C; = L. This representation is not unique.
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