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A Boolean variable x P B can either be true or false.

To simplify the notation, we denote the Boolean set as B :“ t0, 1u.
Here, 0 and 1 are identified with false and true respectively.

B forms a totally ordered set,i.e.,

x ď y and y ď x ô x “ y (for all x, y P B)
x ď y and y ď z ñ x ď z (for all x, y, z P B)

x ď y or y ď x (for all x, y P B)

For two Boolean variables x, y P B, we denote

x ^ y :“mintx, yu x _ y :“maxtx, yu

Powerset
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Given an arbitrary set Ω, we denote the powerset of Ω as PpΩq or 2Ω.
The powerset is the unique set that contains all subsets of Ω.

For two sets A,B P PpΩq, the subset relationship

A Ă B :ô r@i P A : i P Bs
makes PpΩq a partially ordered set,i.e.,

A Ă B and B Ă A ô A “ B (for all A,B P PpΩq)
A Ă B and B Ă C ñ A Ă C (for all A,B,C P PpΩq)

For two subsets A,B P PpΩq, we denote

A X B :“meetpA,Bq A Y B :“joinpA,Bq

Union and Intersection
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Note that for A,B P PpΩq, meetpA,Bq is defined as the maximal lower bound of
A and B,i.e., meetpA,Bq is the C P PpΩq such that

■ C is a lower bound,i.e., C Ă A and C Ă B.
■ For all other lower bounds D, D Ă C holds.

One can show that X and Y coincides with the classial notion of union and
intersection:

A Y B “ti P Ω|i P A or i P Bu
A X B “ti P Ω|i P A and i P Bu

Subsets as Boolean Mappings

Pseudo-Boolean Function Submodularity Lovász Extension Multilinear Extension

IN2245 - Combinatorial Optimization in Computer Vision 2. Pseudo-Boolean Optimization – 7 / 34

To each subset A P PpΩq, we can define the characteristic function

χA : Ω ÑB
i ÞÑri P As

For two characteristic functions χA and χB, we can define

rχA ^ χBspiq :“χApiq ^ χBpiq rχA _ χBspiq :“χApiq _ χBpiq
and we obtain

χA ^ χB “ χAXB χA _ χB “ χAYB

The partial ordering of PpΩq is induced by the total ordering of B.

If we replace B with a totally ordered set L, wie can replace PpΩq with LΩ.

Boolean Function
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A Boolean function E : 2Ω Ñ B assigns to every subset A Ă Ω a Boolean value
EpAq.
One can use a Boolean function in order to test certain properties:

E1pAq “rA ‰ Hs
E2pAq “rA is connecteds
E3pAq “rA is a squares
E4pAq “rA is almost circulars

In Computer Vision, we are usually interested in problems that are beyond a pure
satisfiability test.

We are not interested whether A is almost circular. Instead, we would like to
evaluate some sort of dissimilarity measure between A and a perfect disc.
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A pseudo-Boolean function E : 2Ω Ñ R assigns to every subset A Ă Ω a real
value EpAq.
In the following, we will identify a subset A Ă Ω with its characteristic function
χA : Ω Ñ B. For disjoint sets A and B, we will write A ` B :“ A Y B and for
subsets S Ă T , we will write T ´ S :“ T zS.
Since sets are identified with binary functions, we may also refer to E as a
functional. In the literature, one usually talks about E as a function if Ω is a finite
set. E is referred to as a functional if Ω is a continuous set
(real-valued vector spaces, finite-dimensional manifolds, etc.).

In this lecture, we will only consider finite sets Ω.
See Variational Methods for Computer Vision for functional-driven optimization
methods.

Pseudo-Boolean Optimization
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Most Computer Vision problems can be cast as the minimization of a
pseudo-Boolean function E : 2Ω Ñ R.

Given E : 2Ω Ñ R, we are interested in the global minimum minAĂΩEpAq and in
one of its global minimizers A P argminE,

argminE :“ tA Ă Ω|EpAq ď EpBq for all B Ă Ωu.
Since Ω is finite, we know that argminE is not empty, but in general it may
contain more than one global minimizer.

If the computation of a global minimizer is NP-hard, we are also satisfied with an
approximation. A set S Ă Ω is called an p1 ` ǫq-approximation of argminE, if the
following holds

EpSq ď p1 ` ǫq ¨ min
AĂΩ

EpAq.

Binary Image Segmentation
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A A

Data Term Length Term

Segmenting an image can be cast as minimizing the energy

EDatapAq “
ÿ

iPA
fpiq

It is common to combine it with a length term

ELengthpAq “
ÿ

iPA

ÿ

jRA,
|i´j|“1

1

Binary Image Segmentation
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Given Image Minimizing Data Term Minimizing Data + Length Term

argmin
AĂΩ

EpAq “ argmin
AĂΩ

ÿ

iPΩ´A

f0piq `
ÿ

iPA
f1piq ` lengthpAq

“ argmin
AĂΩ

ÿ

iPΩ
f0piq `

ÿ

iPA
rf1piq ´ f0piqloooooomoooooon

“:fpiq
s ` lengthpAq

“ argmin
AĂΩ

ÿ

iPA
fpiq ` lengthpAq

We will show that this energy can be minimized in polynomial time.

Submodularity
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The minimization of a pseudo-Boolean function E : 2Ω Ñ R (with EpHq “ 0)
becomes very easy, if E is modular,i.e.,

EpA Y Bq ` EpA X Bq “ EpAq ` EpBq (for all A,B P 2Ω)

For disjoint A,B P 2Ω, we have EpA ` Bq “ EpAq ` EpBq, which implies

EpAq “
ÿ

iPA
Eptiuq.

A global minimizer of the modular function E is therefore

A “ ti P Ω|Eptiuq ă 0u
and it can be found in OpNq time, where N :“ |Ω| is the cardinality of Ω.

Submodularity and Supermodularity
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A pseudo-Boolean function E : 2Ω Ñ R is called submodular if

EpA Y Bq ` EpA X Bq ď EpAq ` EpBq (for all A,B P 2Ω)

A pseudo-Boolean function E : 2Ω Ñ R is called supermodular if

EpA Y Bq ` EpA X Bq ě EpAq ` EpBq (for all A,B P 2Ω)

Modular functions are submodular and supermodular. Modular, sub- and
supermodular functions are closed w.r.t. summation and positive scaling.

Minimizing an arbitrary submodular functions can be done in polynomial
time [Grötschel, Lovász, Schrijver, 1981].

The minimization of supermodular functions is NP-hard.

Submodularity w.r.t. 2 Variables
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Let E : 2Ω Ñ R be submodular and let S P 2Ω and i, j P Ω ´ S. Then

EpS ` ti, juq ` EpSq ď EpS ` tiuq ` EpS ` tjuq. (1)

If we define E2 : B ˆ B Ñ R via E2pb1, b2q :“ EpS ` b1 ¨ tiu ` b2 ¨ tjuq, we can
rewrite (1) as

E2p1, 1q ` E2p0, 0q ď E2p1, 0q ` E2p0, 1q (2)

If for a pseudo-Boolean function E : 2Ω Ñ R, the Equation (1) is satisfied for all
S, i, j, the energy E is in fact submodular. Some authors use therefore (2) as
definition for submodularity.
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ELength : 2
Ω Ñ R is submodular and EData : 2

Ω Ñ R is modular.

Iff E : 2Ω Ñ R is a supermodular function, then ´E : 2Ω Ñ R is submodular.

If E : 2Ω Ñ R is submodular, T Ă Ω, then E|T : 2Ω Ñ R is submodular with

E|T pAq :“ EpT X Aq.

If H : R Ñ R is a concave function, then EH : 2Ω Ñ R is submodular with

EHpAq :“ Hp|A|q.

Weighted Contour Length
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A

Weighted Contour Length (w ă 0)

The weighted contour length with negative weights is a supermodular energy.

Minimizing the length is equivalent to
maximizing the cut with positive weights.

The Maximum Cut problem is NP hard.

Thus, minimizing a supermodular function is in general NP hard.

Lovász Extension
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In order to analyze a pseudo-Boolean function E : BΩ Ñ R, one can extend it to a
function sE : r0, 1sΩ Ñ R such that sE|BΩ “ E.

Using a specific total ordering ă of the N P N elements in Ω

i1 ă i2 ă . . . ă iN ,

we can write E : BN Ñ R and sE : r0, 1sN Ñ R.

The convex closure E´ : r0, 1sN Ñ R is defined as

E´pxq “ min

# ÿ

SĂΩ

αS ¨ EpSq
ˇ̌
ˇ̌
ˇ x “

ÿ

SĂΩ

αS ¨ S,
ÿ

SĂΩ

αS “ 1, αS ě 0

+
.

Note that E´ is piecewise linear and hence non-differentiable.

Convex Closure
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Theorem 1. Convex closure E´ of a pseudo-Boolean function E is convex.

Proof. Let x0, x1 P r0, 1sN , λ P r0, 1s and xλ :“ p1 ´ λq ¨ x0 ` λ ¨ x1. We have to
show that E´pxλq ď p1 ´ λqE´px0q ` λE´px1q. We have

E´px0q “
ÿ

SĂΩ

α0
S ¨ EpSq x0 “

ÿ

SĂΩ

α0
S ¨ S

E´px1q “
ÿ

SĂΩ

α1
S ¨ EpSq x1 “

ÿ

SĂΩ

α1
S ¨ S

Defining αλ
S :“ p1 ´ λq ¨ α0

S ` λ ¨ α1
S , we obtain

E´pxλq ď
ÿ

SĂΩ

αλ
S ¨ EpSq “ p1 ´ λqE´px0q ` λE´px1q

Convex Closure (N=2)
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ti, ju

tu tiu

tju ti, ju

tu tiu

tju ti, ju

tu tiu

tju

Discrete Energy E E´ for submodular E E´ for supermodular E

Assume, we have Ω “ ti, ju and the pseudo-Boolean function E : 2Ω Ñ R

EpHq “ Eptiuq “ Eptjuq “ 0 Epti, juq “ α P R

E is submodular for α ď 0 and supermodular for α ě 0.

The convex extension E´ is different for α ă 0 resp. α ą 0.

Lovász Extension
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In general, it may take exponential time in order to evaluate E´.

The Lovász extension on the other hand can be computed in linear time

ELpxq “
kÿ

n“0

αn ¨ EpSnq for x “
kÿ

n“0

αn ¨ Sn

kÿ

n“0

αn “ 1, αn ą 0

H Ă S0 Ĺ . . . Ĺ Sk Ă Ω

Example 1. Let Ω “ ti, ju, E : BΩ Ñ R a pseudo-Boolean function and
f “ p0.1, 0.6q. Then we have

S0 “ H; S1 “ tju; S2 “ ti, ju
ELpxq “ 0.4 ¨ EpS0q ` 0.5 ¨ EpS1q ` 0.1 ¨ EpS2q

Lovász Extension (Representation)
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Theorem 2. Let x P r0, 1sN . Then there is a k ď N , a chain
H Ă S0 Ĺ . . . Ĺ Sk Ă Ω and α0, . . . , αk ą 0 such that

řk
n“0 αn “ 1 and

x “ řk
n“0 αnSn. This representation is unique.

Proof. Induction over |X|, X “ txn|xn ą 0u. We will prove k “ |X| ď N .

Base Case: Assume that |X| “ 0.
X “ H implies x “ 0. We have uniquely k “ 0, S0 “ H and α0 “ 1.

Inductive Step: Assume the theorem is true for all x1 with |X 1| ă |X|.
The biggest set Sk has to be tn|xn ą 0u and we have to choose αk “ minX.
Otherwise, x is not representable as a convex combination. Let now
x1 :“ x ´ αkSk. For the set X 1, we have |X 1| ď |X| ´ 1.
Therefore, there exists a unique representation x1 “ řk´1

n“0 α
1
nS

1
n.

Since maxX 1 ď 1 ´ αk, we have S1
0 “ H and α1

0 ě αk. Setting α0 “ α1
0 ´ αk,

αn “ α1
n for 0 ă n ă k and Sn “ S1

n for 0 ď n ă k provides us with the unique
representation for x.
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Theorem 3. A pseudo-Boolean function E is submodular iff E´ “ EL.

Proof.

Case 1: E is not submodular.
Then, there exist S Ă Ω and i, j P Ω ´ S such that

EpS ` ti, juq ` EpSq ą EpS ` tiuq ` EpS ` tjuq
If we choose x “ S ` 1

2tiu ` 1
2tju, we have

ELpxq “1

2
pEpS ` ti, juq ` EpSqq

E´pxq ď1

2
pEpS ` tiuq ` EpS ` tjuqq

and therefore EL ‰ E´.

Lovász Extension
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Proof (cont.).

Case 2: E is submodular.
Let x P r0, 1sN with |Ω| “ N and

A “
#

pαSqSĂΩ

ˇ̌
ˇ̌
ˇx “

ÿ

SĂΩ

αS ¨ S,
ÿ

SĂΩ

αS “ 1, E´pxq “
ÿ

SĂΩ

αSEpSq
+
.

We choose an ααα P A that maximizes
ř

SĂΩ αS ¨ |S|2. We have to prove that the
αS are only positive for sets that are subsets from one another. Assume that
there are S, T Ă Ω with αS ě αT ą 0 and |SzT | , |T zS| ą 0. Replacing
αT pS ` T q with αT pS X T ` S Y T q does not increase the energy due to
submodularity, but

|S X T |2 ` |S Y T |2 “ |S|2 ` |T |2 ` 2 |SzT | ¨ |T zS| ą |S|2 ` |T |2 ,
which contradicts the choice of ααα.

Lovász Extension
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For submodular functions E, we saw

1. The Lovász extension EL can be evaluated in polynomial time.
2. Since EL “ E´, we can minimize EL in polynomial time.
3. Since EL is piecewise linear, the minimum is been taken at its boundary.

Therefore, the minimum of EL is been taken by a set S Ă Ω.

[Grötschel, Lovász, Schrijver:The ellipsoid method and its consequences in
combinatorial optimization, Combinatorica 1 (1981)]

”The algorithm [...] is based on the ellipsoid method, and uses
therefore a heavy framework of division, rounding, and approximation;
moreover, it is not practical.”

A. Schrijver, 2000

Schrijver’s new method takes OpN5q iterations. In each iteration, an N ˆ N
matrix has to be inverted.

Multilinear Extension
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Another extension of a pseudo-Boolean function E : BN Ñ R is the multilinear
extension sE : r0, 1sN Ñ R.
It makes use of the fact that for a given set A Ă Ω the function

F : BN ÑR

px1, . . . , xnq ÞÑ
ź

iPA
xi

ź

iRA
p1 ´ xiq

satisfies

F pSq “
#
1 if S “ A

0 otherwise

The multilinear extension sE is defined via

sEpx1, . . . , xnq :“
ÿ

AĂΩ

EpAq ¨
ź

iPA
xi

ź

iRA
p1 ´ xiq

Multilinear Extension (Example)
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Consider the pseudo-Boolean function E : B3 Ñ R

x1 x2 x3 Epx1, x2, x3q
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

and its extension sE : r0, 1sN Ñ R:

sEpx1, x2, x3q “ x1p1 ´ x2qp1 ´ x3q ` x1p1 ´ x2qx3 ` x1x2p1 ´ x3q.
Using the notation sx :“ p1 ´ xq, we can write sE as

sEpx1, x2, x3q “x1sx2sx3 ` x1sx2x3 ` x1x2sx3
“x1 p1 ´ x2x3q

Second Derivatives
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Theorem 4. Iff E is submodular, we have B2 sE
BxiBxj

ď 0 for all xi, xj .

Proof. We have

B sE
Bxi “

ÿ

AĂΩ

EpAq B
Bxi

«ź

jPA
xj

ź

jRA
sxj

ff

“
ÿ

iPAĂΩ

EpAq
« ź

jPA,j‰i

xj
ź

jRA
sxj

ff
´

ÿ

iRAĂΩ

EpAq
«ź

jPA
xj

ź

jRA,j‰i

sxj
ff

“ sEpx1, . . . , xi´1, 1, xi`1, . . . , xnq ´ sEpx1, . . . , xi´1, 0, xi`1, . . . , xnq

“
ÿ

AĂpΩztiuq
rEpA ` iq ´ EpAqs

«ź

jPA
xj

ź

jRA
sxj

ff

Second Derivatives
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Proof (Cont.). For the second derivatives we get

B2 sE
BxjBxi “ B

Bxj
ÿ

AĂpΩztiuq
rEpA ` iq ´ EpAqs

«ź

kPA
xk

ź

kRA
sxk

ff

“
ÿ

AĂpΩzti,juq
rpEpA ` i ` jq ´ EpA ` jqq ´ pEpA ` iq ´ EpAqqs¨

¨
«ź

jPA
xj

ź

jRA
sxj

ff

It follows that E is submodular iff B2 sE
BxjBxi

ď 0.
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E : BN Ñ R can be uniquely written as a multi-linear function

Epxq “
Kÿ

i“1

ci ¨
ź

jPCi
xj ,

where ci P R and Ci Ă Ω. We call Ci a clique. If the multi-linear function only
contains cliques of size |Ci| ď 2, we call it a quadratic function.

We refer to Ω as the set of variables. The set L “ tx|x P Ωu \ tx|x P Ωu is called
the set of literals. Any pseudo-Boolean function E : B Ñ R can be written as a
posiform

Epxq “
Kÿ

i“1

ci ¨
ź

jPCi
xj ` C0,

where ci ą 0, C0 P R and Ci Ă L. This representation is not unique.
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