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2. Pseudo-Boolean Optimization 2 /33

Pseudo-Boolean Function 3/33

Boolean Variables

A Boolean variable x € B can either be true or false.

To simplify the notation, we denote the Boolean set as B := {0, 1}.
Here, 0 and 1 are identified with false and true respectively.

B forms a totally ordered set,i.e.,

r<yandy<zeszr=y (for all z,y € B)
r<yandy<z=x<z (for all z,y, z € B)
r<yory<zx (for all z,y € B)

For two Boolean variables =,y € B, we denote

x Ay :=min{x,y} x vy :=max{z,y}

IN2245 - Combinatorial Optimization in Computer Vision 2. Pseudo-Boolean Optimization — 4 / 33



Powerset

Given an arbitrary set €2, we denote the powerset of  as P(2) or 2.
The powerset is the unique set that contains all subsets of (2.

For two sets A, B € P(12), the subset relationship
Ac B:e [Vie A:i€ B
makes P(Q2) a partially ordered set,i.e.,

AcBand Bc A< A=B (for all A, B e P(Q2))
AcBand BcC=AcC (for all A,B,C € P(2))

For two subsets A, B € P(f2), we denote

A n B :=inf{A, B} A u B :=sup{4, B}
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Union and Intersection
Note that for A, B € P(Q?), inf{A, B} is defined as the maximal lower bound of A and B, i.e., inf{A, B} is the C' € P(2) such that

m (s alower bound,i.e., C < A and C < B.
B For all other lower bounds D, D < C holds.

One can show that n and U coincides with the classial notion of union and intersection:

AuB={ieQie Aorie B}
AnB={ieQlie Aandic B}
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Subsets as Boolean Mappings

To each subset A € P(Q2), we can define the characteristic function

Xa:—-B
i —[i e Al
For two characteristic functions x4 and xp, we can define
[xa A xB](i) :==xali) » xB(7) [xa v xBl(i) :==xa(i) v xB(7)
and we obtain
XA NXB = XAnB XAV XB = XAuB

The partial ordering of P((2) is induced by the total ordering of B.

If we replace B with a totally ordered set £, wie can replace P(Q) with £%.
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Boolean Function

A Boolean function E : 2° — B assigns to every subset A = Q a Boolean value E(A).
One can use a Boolean function in order to test certain properties:

Ei1(A) =[A # ]

E5(A) =[A is connected]
(A
(

)
)
)
Ey(A)

[
[

=[A is a square]
[

A is almost circular]

In Computer Vision, we are usually interested in problems that are beyond a pure satisfiability test.

We are not interested whether A is almost circular. Instead, we would like to evaluate some sort of dissimilarity measure between A and a perfect disc.
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Pseudo-Boolean Function

A pseudo-Boolean function E : 2 — R assigns to every subset A — Q a real value E(A).
In the following, we will identify a subset A — €2 with its characteristic function x4 : 2 — B. Therefore, we may also refer to I as a functional.

In the literature, one usually talks about E as a function if {2 is a finite set. E is referred to as a functional if  is a continuous set (real-valued vector
spaces, finite-dimensional manifolds, etc.).

In this lecture, we will only consider finite sets €.
See Variational Methods for Computer Vision for functional-driven optimization methods.
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Pseudo-Boolean Optimization

Most Computer Vision problems can be cast as the minimization of a pseudo-Boolean function E : 2% — R.

Given E : 222 — R, we are interested in the global minimum mingcqo E(A) and in one of its global minimizers A € argmin E,
argmin £ := {A c Q|F(A) < E(B) for all B < Q}.

Since (2 is finite, we know that argmin E' is not empty, but in general it may contain more than one global minimizer.

If the computation of a global minimizer is NP-hard, we are also satisfied with an approximation. A set S < Q is called an (1 + ¢)-approximation of
argmin F, if the following holds

E(S)<(1+¢) fqncl?zE(A)
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Binary Image Segmentation

Data Term

Segmenting an image can be cast as minimizing the energy

It is common to combine it with a length term

ELength (A) = Z Z 1

€A jEA,
li—jl=1
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Binary Image Segmentation

Given Image

Minimizing Data Term

+Zf1

zeQ\A €A

+Zf1

A cq A

argmin EF(A) = argmin Z foli
AcQ AcQ

+ length(A)

fo(i)] + length(A)
=:f(1)

= argmin Z f(@) + length(A)
Ac icA

We will show that this energy can be minimized in polynomial time.

Minimizing Data + Length Term
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Submodularity 13 /33

Modular Functions

The minimization of a pseudo-Boolean function E: 2 — R (with E(¢) = 0) becomes very easy, if E is modular,i.e.,

E(AUB)+ E(An B)=E(A) + E(B) (for all A, B e 29)

For disjoint A, B € 2, we have E(A L B) = E(A) + E(B), which implies

B(A) = Y E({i)).

€A

A global minimizer of the modular function F is therefore
A={ieQE{i}) <0}

and it can be found in O(N) time, where N := |Q] is the cardinality of €.
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Submodularity and Supermodularity

A pseudo-Boolean function E: 2© — R is called submodular if

E(AUB)+E(AnB)<E(A) + E(B) (for all A, B € 29)

A pseudo-Boolean function E: 22 — R is called supermodular if

E(AUB)+ E(An B) > E(A) + E(B) (for all A, B € 2%)

Modular functions are submodular and supermodular. Modular, sub- and supermodular functions are closed w.r.t. summation and positive scaling.
Minimizing an arbitrary submodular functions can be done in polynomial time [Grotschel, Lovédsz, Schrijver, 1981].

The minimization of supermodular functions is in general NP-hard.
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Submodularity w.r.t. 2 Variables
Let E: 2 — R be submodular and let S € 2 and i,j € Q\S. Then

E(Su{i,j}) +ES) <ESu{i})+ESu{j}. (1)

If we define Eo: B x B — R via Ey(b1,b2) := E(S + by - {i} + ba- {j}), we can rewrite (1) as

Es(1,1) + E5(0,0) < E2(0,1) + Ex(1,0) (2)

If for a pseudo-Boolean function E: 2 — R, the Equation (1) is satisfied for all S, i, j, the energy E is in fact submodular. Some authors use therefore (2)
as definition for submodularity.
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Submodular Functions

Elength: 2 — R is submodular and Ep,ta: 2 — R is modular.
Iff £: 2% 5> Ris a supermodular function, then —F': 2, R is submodular.
If E: 29 — R is submodular, T < , then E|T: 22 _ R is submodular with

E|T(A) := E(T ~ A).

If H: R — R is a concave function, then Eg: 2, R is submodular with

En(A) = H(|A)).
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Weighted Contour Length

Weighted Contour Length (w < 0)

The weighted contour length with negative weights is a supermodular energy.

Minimizing the length is equivalent to
maximizing the cut with positive weights.

The Maximum Cut problem is NP hard.

Thus, minimizing a supermodular function is in general NP hard.
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Lovasz Extension 19 / 33

Convex Closure

In order to analyze a pseudo-Boolean function £: B — R, one can extend it to a function E: [0,1]¥ — R such that E|B® = E.
Using a specific totall ordering < of the N € N elements in {2

11 <1g <...<1pn,
we can write £ : BY — R and E: [0,1]Y — R,

The convex closure E7: [0,1]Y — R is defined as

T = ZO&S'S,ZQS:LQSZO}.

ScQ ScQ

E (z) = min{ Z as - E(5)

ScQ

Note that £~ is piecewise linear and hence non-differentiable.
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Convex Closure

Theorem 1. Convex closure E~ of a pseudo-Boolean function E is convex.

Proof. Let 2%, 2' € [0,1]V, A€ [0,1] and 2* := (1 — \) - 2° + X - ', We have to show that E~(2*)

E~ (%) = )] a%-
ScQ

E-(z')= )] ok
ScQ

Defining a3 := (1 — \) - a% + A - al, we obtain

<

~

.130

(1-NE-

2, o5

ScQ

Sc

2, a5

(%) + AE~ (2'). We have
S

S
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Convex Closure (N=2)
{7} {i,J} {7} {i,J} {7} {i,J}

{ {i} { {i} { {i}

Discrete Energy F B~ for submodular E B~ for supermodular E
Assume, we have = {i, j} and the pseudo-Boolean function E : 2 — R

E(@) = E({i}) = E({j}) =0 E({i,j}) =aeR
E is submodular for o« < 0 and supermodular for a = 0.

The convex extension E~ is different for o < 0 resp. « > 0.
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Lovasz Extension

In general, it may take exponential time in order to evaluate £~

The Lovasz extension on the other hand can be computed in linear time

k k
Ef(z) = Zan~E(Sn) for z = Zan~Sn
n=0 n=0

Example 1. Let Q = {i,j}, E: B® — R a pseudo-Boolean function and f = (0.1,0.6). Then we have

So=; Si=1{j} S2=1{ij}
EX(x) = 0.4- E(Sy) + 0.5 E(S1) + 0.1 - E(Sy)
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Lovasz Extension (Representation)

Theorem 2. Let z € [0,1]N. Then thereisa k < N, a chain & < Sy < ... < S, < Q and ay, ..., > 0 such that ZZ:O o, =1andz = ZZ:O 0 Sh,.
This representation is unique.

Proof. Induction over | X| with X = {z;|z; > 0}. We will prove k = | X| < N.

Base Case: Assume that |X| = 0.
X = ¢ implies x = 0. We have uniquely £ =0, Sg = J and oy = 1.
Inductive Step: Assume the theorem is true for all 2/ with | X'| < | X|.
The biggest set Sy has to be {i|x; > 0} and we have to choose a; = min X. Otherwise, x is not representable as a convex combination. Let now
x' = x — oy Sg. For the set X', we have | X'| = |X| — 1.
Therefore, there exists a unique representation =’ = Zﬁ;é o), St
Since max X’ < 1 — ay, we have S, = J and af, = «aj. Setting ap = oy — o, o, = ), for 0 <i < k and S, = S}, for 0 < n < k provides us with a
representation for x.
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Lovasz Extension

Theorem 3. A pseudo-Boolean function E is submodular iff E= = E-.

Proof.

Case 1: [E is not submodular.
Then, there exist S < Q and 4, j € Q\S such that

E(S+{i,j}) + E(S) > E(S+ {i}) + E(S + {j})
If we choose = = S + £{i} + 1{;j}, we have

E*(z) =5 (B(S + {i,}) + E(S5))

N =N =

E™(z) <5 (BE(S +{i}) + E(S + {j}))

and therefore EL = E—.

IN2245 - Combinatorial Optimization in Computer Vision 2. Pseudo-Boolean Optimization — 25 / 33

19



Lovasz Extension

Proof (cont.).

Case 2: I is submodular.
Let z € [0, 1]V with || = N and

x = Z ag - S, Z as=1,E (z) = Z agE(S)}.

ScQ ScQ ScQ

A= {(OéS)ScQ

We choose an a € A that maximizes Y ¢_(, as - |S|2. We have to prove that the a,g are only positive for sets that are subsets from one another. Assume
that there are S, T < Q with ag = ar > 0 and |S\T'|,|T\S| > 0. Replacing ar(S + T') with ar(S nT + S U T) does not increase the energy due to
submodularity, but

ISATP+[SUT)? =|SP+ T +2|S\T| - |T\S| > |S|* + |T|,

which contradicts the choice of a.
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Lovasz Extension

For submodular functions E, we saw

1. The Lovész extension E can be evaluated in polynomial time.
2. Since E¥ = E~, we can minimize E” in polynomial time.
3. Since E” is piecewise linear, the minimum is been taken at its boundary. Therefore, the minimum of E* is been taken by a set S — Q.

[Grétschel, Lovész, Schrijver: The ellipsoid method and its consequences in combinatorial optimization, Combinatorica 1 (1981)]

"The algorithm [...] is based on the ellipsoid method, and uses therefore a heavy framework of division, rounding, and approximation;

moreover, it is not practical.”
A. Schrijver, 2000

Schrijver's new method takes O(N?) iterations. In each iteration, an N x N matrix has to be inverted.

20
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Multilinear Extension 28 / 33

Multilinear Extension

Another extension of a pseudo-Boolean function E : BY — R is the multilinear extension E : [0,1]Y — R.
It makes use of the fact that for a given set A < € the function

F:[0,1]Y -R
(@1, ) = [ [ ] JO =)
€A igA

satisfies

F(S) = 1 fS=A4
10 otherwise

The multilinear extension F is defined via

E(zy,...oz0) = Y B(A)-[Ja: ][] — =)

AcQ €A igA
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Multilinear Extension (Example)

Consider the pseudo-Boolean function £ : B> - R

and its extension E: [0,1]Y — R:

E(xz1,29,23) = x1(1 — 22)(1 — x3) + 21(1 — x9)x3 + T122(1 — 2'3).

Using the notation 7 := (1 — ), we can write £ as

8
—

E(xy,zg, 3)

)
M

8
o

-0 00O

)—‘)—‘OOD—‘D—‘OOZ»
~Oororokrold
ormHoOO

E(x1,x2,x3) =01T2T3 + 1T223 + 12273

=x1 (1 — zoz3)
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Second Derivatives

Theorem 4. Iff E is submodular, we have %ﬂj <0 for all z;, z;.

Proof. We have

oE 0
= :E] 12(11) I_I Zj I_I fj]

oy 4= 0 jeA  j¢A
= Z E(A) 1_[ .le_[:fj]— Z E(A) 1_[:1,‘]' H :fj]
i€eAcQ JeA,j#i JjEA i¢gACQ jeA JEA,jFEL
=E(:):1,...,:):i_l,l,xiﬂ,...,:):n)—E(:):l,...,xi_l,O,xiH,...,xn)
= Y [B(A+i) - B(A)] [mmj]
Ac(\{i}) jEA  j¢A
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Second Derivatives

Proof (Cont.).  For the second derivatives we get
-
L S [B(A+i) - B(A) [Ha:kﬂfk]
LjOT; Ly Ac(Q\{i}) keA  k¢A

- 3

Ac(Q\{i.j})

e

JeA  j¢A

It follows that E is submodular iff =2£_ < 0.

Ox;0x;

[(BE(A+i+7) - E(A+7) — (BE(A+1i) - E(A))]-

24
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