Combinatorial Optimization in Computer Vision (IN2245)

Frank R. Schmidt Csaba Domokos

Winter Semester 2015/2016

2. Pseudo-Boolean Optimization	
Pseudo-Boolean Function	
Boolean Variables	
Powerset	
Union and Intersection	
Subsets as Boolean Mappings	
Boolean Function	
Boolean Function	
Pseudo-Boolean Optimization	1 [.]
Binary Image Segmentation	1
Binary Image Segmentation	1
Submodularity	1
Modular Functions	1
Submodularity and Supermodularity	1
Submodularity w.r.t. 2 Variables	1
Submodular Functions	1

Weighted Contour Length	18
Lovász Extension	19
Convex Closure	20
Convex Closure	21
Convex Closure (N=2)	22
Lovász Extension	23
Lovász Extension (Representation)	24
Lovász Extension	25
Lovász Extension.	26
Lovász Extension	27
Multilinear Extension	28
Multilinear Extension	29
Multilinear Extension (Example)	30
Second Derivatives	31
Second Derivatives	32
Different Representations	33
Literature.	34

2. Pseudo-Boolean Optimization

2 / 34

Pseudo-Boolean Function

3 / 34

Boolean Variables

A Boolean variable $x \in \mathbb{B}$ can either be *true* or *false*.

To simplify the notation, we denote the Boolean set as $\mathbb{B}:=\{0,1\}$. Here, 0 and 1 are identified with *false* and *true* respectively.

 \mathbb{B} forms a **totally ordered set**, *i.e.*,

$$x \leqslant y \text{ and } y \leqslant x \Leftrightarrow x = y$$
 (for all $x, y \in \mathbb{B}$)
 $x \leqslant y \text{ and } y \leqslant z \Rightarrow x \leqslant z$ (for all $x, y, z \in \mathbb{B}$)
 $x \leqslant y \text{ or } y \leqslant x$ (for all $x, y \in \mathbb{B}$)

For two Boolean variables $x, y \in \mathbb{B}$, we denote

$$x \wedge y := \min\{x, y\} \qquad \qquad x \vee y := \max\{x, y\}$$

IN2245 - Combinatorial Optimization in Computer Vision

2. Pseudo-Boolean Optimization – 4 / 34

Powerset

Given an arbitrary set Ω , we denote the *powerset* of Ω as $\mathcal{P}(\Omega)$ or 2^{Ω} . The powerset is the unique set that contains all subsets of Ω .

For two sets $A, B \in \mathcal{P}(\Omega)$, the subset relationship

$$A \subset B :\Leftrightarrow [\forall i \in A : i \in B]$$

makes $\mathcal{P}(\Omega)$ a partially ordered set, i.e.,

$$A \subset B \text{ and } B \subset A \Leftrightarrow A = B$$
 (for all $A, B \in \mathcal{P}(\Omega)$)
 $A \subset B \text{ and } B \subset C \Rightarrow A \subset C$ (for all $A, B, C \in \mathcal{P}(\Omega)$)

For two subsets $A, B \in \mathcal{P}(\Omega)$, we denote

$$A \cap B := \mathsf{meet}(A, B)$$
 $A \cup B := \mathsf{join}(A, B)$

IN2245 - Combinatorial Optimization in Computer Vision

2. Pseudo-Boolean Optimization – 5 / 34

Union and Intersection

Note that for $A, B \in \mathcal{P}(\Omega)$, meet(A, B) is defined as the maximal lower bound of A and B, i.e., meet(A, B) is the $C \in \mathcal{P}(\Omega)$ such that

- lacksquare C is a lower bound, i.e., $C \subset A$ and $C \subset B$.
- For all other lower bounds D, $D \subset C$ holds.

One can show that \cap and \cup coincides with the classial notion of *union* and *intersection*:

$$A \cup B = \{i \in \Omega | i \in A \text{ or } i \in B\}$$
$$A \cap B = \{i \in \Omega | i \in A \text{ and } i \in B\}$$

IN2245 - Combinatorial Optimization in Computer Vision

2. Pseudo-Boolean Optimization - 6 / 34

Subsets as Boolean Mappings

To each subset $A \in \mathcal{P}(\Omega)$, we can define the characteristic function

$$\chi_A: \Omega \to \mathbb{B}$$
$$i \mapsto [i \in A]$$

For two characteristic functions χ_A and χ_B , we can define

$$[\chi_A \wedge \chi_B](i) := \chi_A(i) \wedge \chi_B(i) \qquad [\chi_A \vee \chi_B](i) := \chi_A(i) \vee \chi_B(i)$$

and we obtain

$$\chi_A \wedge \chi_B = \chi_{A \cap B} \qquad \qquad \chi_A \vee \chi_B = \chi_{A \cup B}$$

The partial ordering of $\mathcal{P}(\Omega)$ is induced by the total ordering of \mathbb{B} .

If we replace \mathbb{B} with a totally ordered set \mathcal{L} , wie can replace $\mathcal{P}(\Omega)$ with \mathcal{L}^{Ω} .

IN2245 - Combinatorial Optimization in Computer Vision

2. Pseudo-Boolean Optimization – 7 / 34

Boolean Function

A Boolean function $E: 2^{\Omega} \to \mathbb{B}$ assigns to every subset $A \subset \Omega$ a Boolean value E(A).

One can use a Boolean function in order to test certain properties:

$$E_1(A) = [A \neq \varnothing]$$

 $E_2(A) = [A \text{ is connected}]$

 $E_3(A) = [A \text{ is a square}]$

 $E_4(A) = [A \text{ is almost circular}]$

In Computer Vision, we are usually interested in problems that are beyond a pure satisfiability test.

We are not interested whether A is almost circular. Instead, we would like to evaluate some sort of dissimilarity measure between A and a perfect disc.

IN2245 - Combinatorial Optimization in Computer Vision

2. Pseudo-Boolean Optimization - 8 / 34

Pseudo-Boolean Function

A pseudo-Boolean function $E: 2^{\Omega} \to \mathbb{R}$ assigns to every subset $A \subset \Omega$ a real value E(A).

In the following, we will identify a subset $A \subset \Omega$ with its characteristic function $\chi_A : \Omega \to \mathbb{B}$. For disjoint sets A and B, we will write $A + B := A \cup B$ and for subsets $S \subset T$, we will write $T - S := T \backslash S$.

Since sets are identified with binary functions, we may also refer to E as a functional. In the literature, one usually talks about E as a function if Ω is a finite set. E is referred to as a functional if Ω is a continuous set (real-valued vector spaces, finite-dimensional manifolds, etc.).

In this lecture, we will only consider finite sets Ω .

See Variational Methods for Computer Vision for functional-driven optimization methods.

IN2245 - Combinatorial Optimization in Computer Vision

2. Pseudo-Boolean Optimization – 9 / 34

Pseudo-Boolean Optimization

Most Computer Vision problems can be cast as the minimization of a pseudo-Boolean function $E: 2^{\Omega} \to \mathbb{R}$.

Given $E: 2^{\Omega} \to \mathbb{R}$, we are interested in the global minimum $\min_{A \subset \Omega} E(A)$ and in one of its global minimizers $A \in \operatorname{argmin} E$,

$$\operatorname{argmin} E := \{ A \subset \Omega | E(A) \leqslant E(B) \text{ for all } B \subset \Omega \}.$$

Since Ω is finite, we know that $\operatorname{argmin} E$ is not empty, but in general it may contain more than one global minimizer.

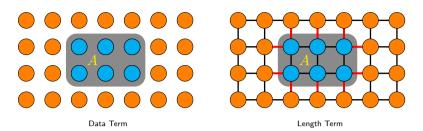
If the computation of a global minimizer is NP-hard, we are also satisfied with an approximation. A set $S \subset \Omega$ is called an $(1 + \epsilon)$ -approximation of $\operatorname{argmin} E$, if the following holds

$$E(S) \le (1 + \epsilon) \cdot \min_{A \subset \Omega} E(A).$$

IN2245 - Combinatorial Optimization in Computer Vision

2. Pseudo-Boolean Optimization – 10 / 34

Binary Image Segmentation



Segmenting an image can be cast as minimizing the energy

$$E_{\mathsf{Data}}(A) = \sum_{i \in A} f(i)$$

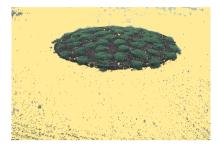
It is common to combine it with a length term

$$E_{\mathsf{Length}}(A) = \sum_{i \in A} \sum_{\substack{j \notin A, \\ |i-j|=1}} 1$$

IN2245 - Combinatorial Optimization in Computer Vision

2. Pseudo-Boolean Optimization – 11 / 34

Binary Image Segmentation



Given Image

Minimizing Data Term

Minimizing Data + Length Term

$$\begin{aligned} \underset{A \subset \Omega}{\operatorname{argmin}} E(A) &= \underset{i \in \Omega - A}{\operatorname{argmin}} \sum_{i \in \Omega - A} f_0(i) + \sum_{i \in A} f_1(i) + \operatorname{length}(A) \\ &= \underset{A \subset \Omega}{\operatorname{argmin}} \sum_{i \in \Omega} f_0(i) + \sum_{i \in A} [\underbrace{f_1(i) - f_0(i)}_{=:f(i)}] + \operatorname{length}(A) \\ &= \underset{A \subset \Omega}{\operatorname{argmin}} \sum_{i \in A} f(i) + \operatorname{length}(A) \end{aligned}$$

We will show that this energy can be minimized in polynomial time.

IN2245 - Combinatorial Optimization in Computer Vision

2. Pseudo-Boolean Optimization – 12 / 34

Submodularity 13 / 34

Modular Functions

The minimization of a pseudo-Boolean function $E \colon 2^{\Omega} \to \mathbb{R}$ (with $E(\emptyset) = 0$) becomes very easy, if E is modular, i.e.,

$$E(A \cup B) + E(A \cap B) = E(A) + E(B)$$
 (for all $A, B \in 2^{\Omega}$)

For disjoint $A, B \in 2^{\Omega}$, we have E(A + B) = E(A) + E(B), which implies

$$E(A) = \sum_{i \in A} E(\{i\}).$$

A global minimizer of the modular function ${\cal E}$ is therefore

$$A = \{ i \in \Omega | E(\{i\}) < 0 \}$$

and it can be found in $\mathcal{O}(N)$ time, where $N:=|\Omega|$ is the cardinality of Ω .

IN2245 - Combinatorial Optimization in Computer Vision

2. Pseudo-Boolean Optimization - 14 / 34

Submodularity and Supermodularity

A pseudo-Boolean function $E \colon 2^\Omega \to \mathbb{R}$ is called submodular if

$$E(A \cup B) + E(A \cap B) \leqslant E(A) + E(B) \tag{for all } A, B \in 2^{\Omega})$$

A pseudo-Boolean function $E \colon 2^{\Omega} \to \mathbb{R}$ is called supermodular if

$$E(A \cup B) + E(A \cap B) \geqslant E(A) + E(B)$$
 (for all $A, B \in 2^{\Omega}$)

Modular functions are submodular and supermodular. Modular, sub- and supermodular functions are closed w.r.t. summation and positive scaling.

Minimizing an arbitrary submodular functions can be done in polynomial time [Grötschel, Lovász, Schrijver, 1981].

The minimization of supermodular functions is NP-hard.

IN2245 - Combinatorial Optimization in Computer Vision

2. Pseudo-Boolean Optimization - 15 / 34

Submodularity w.r.t. 2 Variables

Let $E: 2^{\Omega} \to \mathbb{R}$ be submodular and let $S \in 2^{\Omega}$ and $i, j \in \Omega - S$. Then

$$E(S + \{i, j\}) + E(S) \le E(S + \{i\}) + E(S + \{j\}). \tag{1}$$

If we define $E_2 : \mathbb{B} \times \mathbb{B} \to \mathbb{R}$ via $E_2(b_1, b_2) := E(S + b_1 \cdot \{i\} + b_2 \cdot \{j\})$, we can rewrite (1) as

$$E_2(1,1) + E_2(0,0) \le E_2(1,0) + E_2(0,1)$$
 (2)

If for a pseudo-Boolean function $E: 2^{\Omega} \to \mathbb{R}$, the Equation (1) is satisfied for all S, i, j, the energy E is in fact submodular. Some authors use therefore (2) as definition for submodularity.

IN2245 - Combinatorial Optimization in Computer Vision

2. Pseudo-Boolean Optimization – 16 / 34

Submodular Functions

 $E_{\mathsf{Length}} \colon 2^\Omega \to \mathbb{R}$ is submodular and $E_{\mathsf{Data}} \colon 2^\Omega \to \mathbb{R}$ is modular.

Iff $E\colon 2^\Omega\to\mathbb{R}$ is a supermodular function, then $-E\colon 2^\Omega\to\mathbb{R}$ is submodular.

If $E\colon 2^\Omega\to\mathbb{R}$ is submodular, $T\subset\Omega$, then $E|T\colon 2^\Omega\to\mathbb{R}$ is submodular with

$$E|T(A) := E(T \cap A).$$

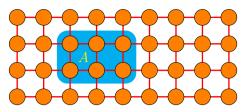
If $H \colon \mathbb{R} \to \mathbb{R}$ is a concave function, then $E_H \colon 2^\Omega \to \mathbb{R}$ is submodular with

$$E_H(A) := H(|A|).$$

IN2245 - Combinatorial Optimization in Computer Vision

2. Pseudo-Boolean Optimization - 17 / 34

Weighted Contour Length



Weighted Contour Length (w < 0)

The weighted contour length with negative weights is a supermodular energy.

Minimizing the length is equivalent to maximizing the cut with positive weights.

The Maximum Cut problem is NP hard.

Thus, minimizing a supermodular function is in general NP hard.

IN2245 - Combinatorial Optimization in Computer Vision

2. Pseudo-Boolean Optimization – 18 / 34

Lovász Extension 19 / 34

Convex Closure

In order to analyze a pseudo-Boolean function $E \colon \mathbb{B}^\Omega \to \mathbb{R}$, one can extend it to a function $\bar{E} \colon [0,1]^\Omega \to \mathbb{R}$ such that $\bar{E} | \mathbb{B}^\Omega = E$.

Using a specific total ordering \prec of the $N \in \mathbb{N}$ elements in Ω

$$i_1 < i_2 < \ldots < i_N$$

we can write $E:\mathbb{B}^N \to \mathbb{R}$ and $\bar{E}\colon [0,1]^N \to \mathbb{R}.$

The convex closure $E^-\colon [0,1]^N \to \mathbb{R}$ is defined as

$$E^{-}(x) = \min \left\{ \sum_{S \subset \Omega} \alpha_S \cdot E(S) \middle| x = \sum_{S \subset \Omega} \alpha_S \cdot S, \sum_{S \subset \Omega} \alpha_S = 1, \alpha_S \geqslant 0 \right\}.$$

Note that E^- is piecewise linear and hence non-differentiable.

IN2245 - Combinatorial Optimization in Computer Vision

2. Pseudo-Boolean Optimization - 20 / 34

Convex Closure

Theorem 1. Convex closure E^- of a pseudo-Boolean function E is convex.

 $\textit{Proof.} \quad \text{Let } x^0, x^1 \in [0,1]^N \text{, } \lambda \in [0,1] \text{ and } x^\lambda := (1-\lambda) \cdot x^0 + \lambda \cdot x^1. \text{ We have to show that } E^-(x^\lambda) \leqslant (1-\lambda)E^-(x^0) + \lambda E^-(x^1). \text{ We have to show that } E^-(x^\lambda) \leqslant (1-\lambda)E^-(x^0) + \lambda E^-(x^1).$

$$E^{-}(x^{0}) = \sum_{S \subset \Omega} \alpha_{S}^{0} \cdot E(S)$$

$$x^{0} = \sum_{S \subset \Omega} \alpha_{S}^{0} \cdot S$$

$$E^{-}(x^{1}) = \sum_{S \subset \Omega} \alpha_{S}^{1} \cdot E(S)$$

$$x^{1} = \sum_{S \subset \Omega} \alpha_{S}^{1} \cdot S$$

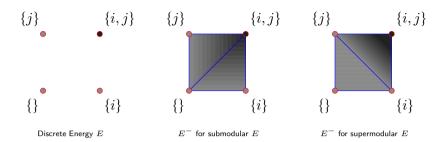
Defining $\alpha_S^{\lambda}:=(1-\lambda)\cdot\alpha_S^0+\lambda\cdot\alpha_S^1$, we obtain

$$E^{-}(x^{\lambda}) \leqslant \sum_{S \subset \Omega} \alpha_{S}^{\lambda} \cdot E(S) = (1 - \lambda)E^{-}(x^{0}) + \lambda E^{-}(x^{1})$$

IN2245 - Combinatorial Optimization in Computer Vision

2. Pseudo-Boolean Optimization - 21 / 34

Convex Closure (N=2)



Assume, we have $\Omega = \{i,j\}$ and the pseudo-Boolean function $E:2^\Omega \to \mathbb{R}$

$$E(\emptyset) = E(\{i\}) = E(\{j\}) = 0$$

$$E(\{i,j\}) = \alpha \in \mathbb{R}$$

E is submodular for $\alpha \leqslant 0$ and supermodular for $\alpha \geqslant 0$.

The convex extension E^- is different for $\alpha < 0$ resp. $\alpha > 0$.

IN2245 - Combinatorial Optimization in Computer Vision

2. Pseudo-Boolean Optimization - 22 / 34

Lovász Extension

In general, it may take exponential time in order to evaluate ${\cal E}^-.$

The Lovász extension on the other hand can be computed in linear time

$$E^{L}(x) = \sum_{n=0}^{k} \alpha_n \cdot E(S_n)$$
 for $x = \sum_{n=0}^{k} \alpha_n \cdot S_n$
$$\sum_{n=0}^{k} \alpha_n = 1, \alpha_n > 0$$

$$\varnothing \subset S_0 \subsetneq \ldots \subsetneq S_k \subset \Omega$$

Example 1. Let $\Omega=\{i,j\}$, $E\colon \mathbb{B}^\Omega\to\mathbb{R}$ a pseudo-Boolean function and f=(0.1,0.6). Then we have

$$S_0 = \emptyset; \quad S_1 = \{j\}; \quad S_2 = \{i, j\}$$

$$E^L(x) = 0.4 \cdot E(S_0) + 0.5 \cdot E(S_1) + 0.1 \cdot E(S_2)$$

IN2245 - Combinatorial Optimization in Computer Vision

2. Pseudo-Boolean Optimization - 23 / 34

Lovász Extension (Representation)

Theorem 2. Let $x \in [0,1]^N$. Then there is a $k \leq N$, a chain $\emptyset \subset S_0 \subsetneq \ldots \subsetneq S_k \subset \Omega$ and $\alpha_0,\ldots,\alpha_k>0$ such that $\sum_{n=0}^k \alpha_n=1$ and $x=\sum_{n=0}^k \alpha_n S_n$. This representation is unique.

Proof. Induction over |X|, $X = \{x_n | x_n > 0\}$. We will prove $k = |X| \le N$.

Base Case: Assume that |X| = 0.

 $X=\emptyset$ implies x=0. We have uniquely k=0, $S_0=\emptyset$ and $\alpha_0=1$.

Inductive Step: Assume the theorem is true for all x' with |X'| < |X|.

The biggest set S_k has to be $\{n|x_n>0\}$ and we have to choose $\alpha_k=\min X$. Otherwise, x is not representable as a convex combination. Let now $x' := x - \alpha_k S_k$. For the set X', we have $|X'| \leq |X| - 1$.

Therefore, there exists a unique representation $x' = \sum_{n=0}^{k-1} \alpha'_n S'_n$. Since $\max X' \leqslant 1 - \alpha_k$, we have $S'_0 = \varnothing$ and $\alpha'_0 \geqslant \alpha_k$. Setting $\alpha_0 = \alpha'_0 - \alpha_k$, $\alpha_n = \alpha'_n$ for 0 < n < k and $S_n = S'_n$ for $0 \leqslant n < k$ provides us with the unique representation for x.

IN2245 - Combinatorial Optimization in Computer Vision

2. Pseudo-Boolean Optimization - 24 / 34

Lovász Extension

Theorem 3. A pseudo-Boolean function E is submodular iff $E^- = E^L$.

Proof.

Case 1: E is not submodular.

Then, there exist $S \subset \Omega$ and $i,j \in \Omega - S$ such that

$$E(S + \{i, j\}) + E(S) > E(S + \{i\}) + E(S + \{j\})$$

If we choose $x=S+\frac{1}{2}\{i\}+\frac{1}{2}\{j\}$, we have

$$E^{L}(x) = \frac{1}{2} (E(S + \{i, j\}) + E(S))$$

$$E^{-}(x) \leq \frac{1}{2} (E(S + \{i\}) + E(S + \{j\}))$$

and therefore $E^L \neq E^-$.

IN2245 - Combinatorial Optimization in Computer Vision

2. Pseudo-Boolean Optimization – 25 / 34

Lovász Extension

Proof (cont.).

Case 2: E is submodular.

Let $x \in [0,1]^N$ with $|\Omega| = N$ and

$$\mathcal{A} = \left\{ (\alpha_S)_{S \subset \Omega} \middle| x = \sum_{S \subset \Omega} \alpha_S \cdot S, \sum_{S \subset \Omega} \alpha_S = 1, E^-(x) = \sum_{S \subset \Omega} \alpha_S E(S) \right\}.$$

We choose an $\alpha \in \mathcal{A}$ that maximizes $\sum_{S \subset \Omega} \alpha_S \cdot |S|^2$. We have to prove that the α_S are only positive for sets that are subsets from one another. Assume that there are $S, T \subset \Omega$ with $\alpha_S \geqslant \alpha_T > 0$ and $|S \setminus T|$, $|T \setminus S| > 0$. Replacing $\alpha_T(S+T)$ with $\alpha_T(S \cap T + S \cup T)$ does not increase the energy due to submodularity, but

$$|S \cap T|^2 + |S \cup T|^2 = |S|^2 + |T|^2 + 2|S \setminus T| \cdot |T \setminus S| > |S|^2 + |T|^2$$

which contradicts the choice of α .

IN2245 - Combinatorial Optimization in Computer Vision

2. Pseudo-Boolean Optimization - 26 / 34

Lovász Extension

For submodular functions E, we saw

- 1. The Lovász extension E^L can be evaluated in polynomial time.
- 2. Since $E^L = E^-$, we can minimize E^L in polynomial time.
- 3. Since E^L is piecewise linear, the minimum is been taken at its boundary. Therefore, the minimum of E^L is been taken by a set $S \subset \Omega$.

[Grötschel, Lovász, Schrijver: The ellipsoid method and its consequences in combinatorial optimization, Combinatorica 1 (1981)]

"The algorithm [...] is based on the ellipsoid method, and uses therefore a heavy framework of division, rounding, and approximation; moreover, it is not practical."

A. Schrijver, 2000

Schrijver's new method takes $\mathcal{O}(N^5)$ iterations. In each iteration, an $N \times N$ matrix has to be inverted.

Multilinear Extension 28 / 34

Multilinear Extension

Another extension of a pseudo-Boolean function $E: \mathbb{B}^N \to \mathbb{R}$ is the multilinear extension $\bar{E}: [0,1]^N \to \mathbb{R}$. It makes use of the fact that for a given set $A \subset \Omega$ the function

$$F: \mathbb{B}^N \to \mathbb{R}$$

 $(x_1, \dots, x_n) \mapsto \prod_{i \in A} x_i \prod_{i \notin A} (1 - x_i)$

satisfies

$$F(S) = \begin{cases} 1 & \text{if } S = A \\ 0 & \text{otherwise} \end{cases}$$

The multilinear extension \bar{E} is defined via

$$\bar{E}(x_1,\ldots,x_n) := \sum_{A \subset \Omega} E(A) \cdot \prod_{i \in A} x_i \prod_{i \notin A} (1 - x_i)$$

IN2245 - Combinatorial Optimization in Computer Vision

2. Pseudo-Boolean Optimization - 29 / 34

Multilinear Extension (Example)

Consider the pseudo-Boolean function $E:\mathbb{B}^3\to\mathbb{R}$

x_1	x_2	x_3	$E(x_1, x_2, x_3)$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

and its extension $\bar{E} \colon [0,1]^N \to \mathbb{R}$:

$$\bar{E}(x_1, x_2, x_3) = x_1(1 - x_2)(1 - x_3) + x_1(1 - x_2)x_3 + x_1x_2(1 - x_3).$$

Using the notation $\bar{x}:=(1-x)$, we can write \bar{E} as

$$\bar{E}(x_1, x_2, x_3) = x_1 \bar{x}_2 \bar{x}_3 + x_1 \bar{x}_2 x_3 + x_1 x_2 \bar{x}_3
= x_1 (1 - x_2 x_3)$$

IN2245 - Combinatorial Optimization in Computer Vision

2. Pseudo-Boolean Optimization - 30 / 34

Second Derivatives

Theorem 4. Iff E is submodular, we have $\frac{\partial^2 \bar{E}}{\partial x_i \partial x_j} \leq 0$ for all x_i, x_j .

Proof. We have

$$\frac{\partial \bar{E}}{\partial x_{i}} = \sum_{A \subset \Omega} E(A) \frac{\partial}{\partial x_{i}} \left[\prod_{j \in A} x_{j} \prod_{j \notin A} \bar{x}_{j} \right]$$

$$= \sum_{i \in A \subset \Omega} E(A) \left[\prod_{j \in A, j \neq i} x_{j} \prod_{j \notin A} \bar{x}_{j} \right] - \sum_{i \notin A \subset \Omega} E(A) \left[\prod_{j \in A} x_{j} \prod_{j \notin A, j \neq i} \bar{x}_{j} \right]$$

$$= \bar{E}(x_{1}, \dots, x_{i-1}, 1, x_{i+1}, \dots, x_{n}) - \bar{E}(x_{1}, \dots, x_{i-1}, 0, x_{i+1}, \dots, x_{n})$$

$$= \sum_{A \subset (\Omega \setminus \{i\})} \left[E(A+i) - E(A) \right] \left[\prod_{j \in A} x_{j} \prod_{j \notin A} \bar{x}_{j} \right]$$

IN2245 - Combinatorial Optimization in Computer Vision

2. Pseudo-Boolean Optimization - 31 / 34

Second Derivatives

Proof (Cont.). For the second derivatives we get

$$\frac{\partial^2 \bar{E}}{\partial x_j \partial x_i} = \frac{\partial}{\partial x_j} \sum_{A \subset (\Omega \setminus \{i\})} [E(A+i) - E(A)] \left[\prod_{k \in A} x_k \prod_{k \notin A} \bar{x}_k \right]$$

$$= \sum_{A \subset (\Omega \setminus \{i,j\})} [(E(A+i+j) - E(A+j)) - (E(A+i) - E(A))] \cdot \left[\prod_{j \in A} x_j \prod_{j \notin A} \bar{x}_j \right]$$

It follows that E is submodular iff $\frac{\partial^2 \bar{E}}{\partial x_i \partial x_i} \leqslant 0$.

Different Representations

 $E \colon \mathbb{B}^N \to \mathbb{R}$ can be uniquely written as a multi-linear function

$$E(x) = \sum_{i=1}^{K} c_i \cdot \prod_{j \in \mathcal{C}_i} x_j,$$

where $c_i \in \mathbb{R}$ and $C_i \subset \Omega$. We call C_i a clique. If the multi-linear function only contains cliques of size $|C_i| \leq 2$, we call it a quadratic function.

We refer to Ω as the set of variables. The set $\mathcal{L} = \{x | x \in \Omega\} \sqcup \{\overline{x} | x \in \Omega\}$ is called the set of **literals**. Any pseudo-Boolean function $E \colon \mathbb{B} \to \mathbb{R}$ can be written as a **posiform**

$$E(x) = \sum_{i=1}^{K} c_i \cdot \prod_{j \in \mathcal{C}_i} x_j + C_0,$$

where $c_i > 0$, $C_0 \in \mathbb{R}$ and $C_i \subset \mathcal{L}$. This representation is **not** unique.

IN2245 - Combinatorial Optimization in Computer Vision

2. Pseudo-Boolean Optimization - 33 / 34

Literature

Pseudo Boolean Optimization

■ Boros and Hammer, *Pseudo-Boolean Optimization*, 2002, Discrete Applied Mathematics (123), 155–225.

Submodularity

- Edmonds, Submodular Functions, Matroids, and Certain Polyhedra, 1970, Combinatorial structures and their applications, 69–87.
- Boros and Hammer, Pseudo-Boolean Optimization, 2002, Discrete Applied Mathematics (123), 155–225.
- Schrijver, *Combinatorial Optimization*, Chapters 44–45.

IN2245 - Combinatorial Optimization in Computer Vision

2. Pseudo-Boolean Optimization - 34 / 34