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3. Introduction to Probability Theory 2 /41

Reasoning under uncertainty

We often want to understand a system when we have imperfect or incomplete information due to, for example, noisy measurement. There are two main
reasons why we might reason under uncertainty:

B Laziness: modeling every detail of a complex system is costly
B /gnorance: we may not completely understand
Probability P(A) refers to a degree of confidence that an event A with uncertain nature will occur.

It is common to assume that 0 < P(A) < 1. If P(A) = 1, we are certain that A occurs, while P(A) = 0 asserts that A will not occur.

IN2245 - Combinatorial Optimization in Computer Vision 3. Introduction to Probability Theory — 3 / 41

Interpretations of probability

Objective probability: It quantifies uncertainty regarding the occurrence of events. After repeating an experiment under identical conditions one can
calculate the relative frequency of an event A as
ma
hA =
m
where m 4 is the number of times when A occurs and m is the total number of experiments performed.
Example: flipping a coin, the relative frequencies of heads and tails are around one half.

Subjective probability: measures a personal belief.
Example: The probability of rain tomorrow in Munich is 50%.
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Probability 5/ 41

Experiment, event space, event

An experiment is a (random) process that can be infinitely many times repeated and has a well-defined set of
possible outcomes. In case of repeated experiments the individual repetitions are also called trials.

Example: throwing two “fair dice” (i.e. we assume equally likely chance of landing on any face) with six faces.

The event space, denoted by €2, is the set of possible outcomes.
Example: Q = {(i,7) : 1 <i,j < 6}.

A set of outcomes A < () is called an event. An atomic event is an event that contains a single outcome w € ).
Example: A = {(i,7) : i+ j = 11}, i.e. the sum of the numbers showing on the top is equal to eleven.
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Basic notations

Let A and B be two events from an event space 2. We will use the following notations:

A does not occur: A = O\A either A or B occur: Au B
Q

both A and B occur: An B A occurs and B does not: A\B
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B The J is called the impossible event; and
H () is the sure event.




Discrete probability space

A probability space represents our uncertainty regarding an experiment.
A triple (2, A, P) is called a discrete probability space, if

B is not empty and countable (i.e. 3§ < N such that || = |S]),
B A is the power set P(2), and
B P: A — Ris a function, called a probability measure, with the following properties:

1. P(A)=0forall Ac A
2. PQ)=1
3. o-additivity holds: if A, € A,n=1,2,... and 4; n A; = J for i # j, then

‘P(LJ Aﬂ):: §:<P(An)'

n=1 n=1

The conditions 1-3. are called Kolmogorov’s axioms.
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Example: throwing two “fair dice”

For this case a discrete probability space (€2, A, P) is given by
B Event space: Q= {(7,7) : 1 <1i,j < 6}.

B A=P) ={{1,1},....{(1,1),(1,2)},...,{(1,1),(1,2),(1,3)},... }.

B The probability measure

where £ is the number of atomic events in A.

Example: Let A denote the event when the sum of the numbers showing on the top is equal to eleven that is A = {(4,j) : i + j = 11} = {(5,6), (6,5)}.

Hence
P(A) = P(5,6),(6,5))) = 5
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Example: throwing two “fair dice”

Events | Set of corresponding atomic events Probability
2 {(1,1)} 1/36 ~ 3%
3 {(1,2), (2,1)} 2/36 ~ 6%
4 {(1,3), (2,2), (3,1)} 3/36 ~ 8%
5 {(1,4), (2,3), (3,2), (4,1)} 4/36 ~ 11%
6 {(1,5), (2,4), (3,3), (4,2), (5,1)} 5/36 ~ 14%
7 {(1,6), (2,5), (3.4), (4,3), (5,2), (6,1)} | 6/36 ~ 17%
8 {(2,6), (3,5), (4,4), (5,3), (6,2)} 5/36 ~ 14%
9 {(3,6), (4,5), (5,4), (6,3)} 4/36 ~ 11%
10 {(4,6), (5,5), (6,4)} 3/36 ~ 8%
11 {(5,6), (6,5)} 2/36 ~ 6%
12 {(6,6)} 1/36 ~ 3%
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o-algebra, measure, measure space

Assume an arbitrary set Q2 and A < P(2). The set A is a o-algebra over Q) if the following conditions are satisfied:
1. gedA,

2. Ae A= Ae A(ie itisclosed under complementation),

3. AieA(ieN)=|J2,4;€A(ie. itis closed under countable union).

It is a consequence of this definition that Q2 € A is also satisfied.

Assume an arbitrary set 2 and a o-algebra A over Q. A function P : A — [0,00] is called a measure if the following conditions are satisfied:

1. P(g) =0,
2. P is o-additive.

Let A be a o-algebra over Q and P : A — [0, 0] is a measure. (£2,.A) is said to be a measurable space and the triple (€2, A, P) is called a measure space.
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Probability space

A probability space is a triple (€2,.A, P), where (2, A) is a measurable space, and P is a measure such that P(Q2) = 1, called a probability measure.

To summarize:
A triple (2, A, P) is called probability space, if

B the event space () is not empty,
B A is a o-algebra over (2, and

B P: A — Ris a function with the following properties:
1. P(A)=0forall Ac A

2. PQ)=1 Q
3. o-additive: if A, e A, n=1,2,,... and A; n A; = J for i # j, then

A

y.

A = 3o 7= |

0 P(A)+ P(B)=P(AuB) 1
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Example: throwing a dart

Suppose a dart is thrown at a round board modeled as a unit circle. The sample space contains the location of the

dart if it lands in the board only. The sample space is given by Q = {(z,y) € R? : 22 + ¢% < 1}.

We denote the area of an the event A < Q by u(A), which is defined as the Riemann-integral of the characteristic function of A

u(A) = L xa(x)dz , where xa(z)= {1’ foed

The o-algebra A over (Q is defined as follows
A={A<Q:pu(A) exists} .
The probability measure P : 2 — [0,1] is given as P(A) = ud)

™

0, ife¢A.
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Some simple consequences of the axioms

The following rules are frequently used in applications:

m P(A) =1-P(O\A)

Proof. Note that A and Q\A are disjoint.

1=P(Q)=P(AuU(Q\A)) = P(A) + P(Q\A) O
m P()=0
Proof. P()=1—-PN\ZJ)=1-P(2)=1-1=0 O
m If Ac B, then P(A) < P(B)
m P(AuB)=P(A)+ P(B)— P(An B)
m P(AuB)<P(A)+ P(B)
m P(A\B)=P(A)— P(An B)
n ...
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Conditional Probability 15 / 41

Conditional probability

Conditional probability allows us to reason with partial information.
If P(B) > 0, the conditional probability of A given B is defined as

P(A\B):P(ﬁ(i;)B).

This is the probability that A occurs, given we have observed B, i.e. we 0

know the experiment's actual outcome will be in B. ‘»

L h"d

0 P(A~B)/P(B)=P(A|B) 1

Note that the axioms and rules of probability theory are fulfilled for the conditional probability. (e.g. P(A | B) =1 — P(A | B)).
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Example

Consider two producing machines creating identical product in a factory. Assume we are given the following table with probabilities

Machine | Machine Il
The product is good 0.56 0.41 0.97
The product is waste 0.01 0.02 0.03
| 057 043 | 1

What is the probability of that a product was created by Machine |, when it is good?
Let A denote the event that the product was created by Machine | and let B denote the event that the product is good.

P(AnB) 056 _
P(B) 097

P(A|B) = 0.58
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The chain rule

The product rule: starting with the definition of conditional probability P(B | A) and multiplying by P(A) we get that
P(AnB)=P(A)P(B|A).

The chain rule:
P(n"1A;) = P(A1)P(As | A1)P(As | A1 0 Ag) -+ P(A, | nI2MA) (1)

Proof. By induction. For n = 2 we get the product rule. Let n € N be given and suppose Eq. (1) is true for k < n. Then
P(APHA) = P(Apir 0 (01 A)) = P(Apsr | N A)P(n] Ay) -

O
The chain rule will become important later when we discuss conditional independence.
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Bayes’ rule

By making use of the product rule we can get
P(AnB) P(B|A)P(A
P(A|B) = =
B = pE) P(B)

P(A | B) is often called the posteriori probability, and P(B | A) is called the likelihood, and P(A) is called the prior probability.

A more general version of Bayes' rule, when we have a background event C"

P(B|AnC)P(A|C)

P(A|BnC) = P(B|C)

Example: What is the probability of that a product is good, if it was created by Machine 1?7 We are given P(A | B) = 0.58, P(A) = 0.57 and P(B) = 0.97.

A|B)P(B)  0.58-0.97

= ~ 0.98 .
P(A) 0.57

P 4) - 2
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Independence

Two events A and B are independent, denoted by A L B if
P(A|B) = P(A)

or, equivalently, iff
P(An B)=P(A)P(B) .
If A and B are independent, learning that B happened does not make A more or less likely to occur.

Example: Suppose we roll a die. Let us consider the event A denoting “the die outcome is even” and B denoting “the die outcome is 1 or 2".

If the die is fair, then P(A) = 1 and P(B) = 3. Moreover A n B means the event that the outcome is two, so P(4 n B) = .

= P(A)P(B) = A and B are independent.

1 11
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Conditional independence
Let A, B and C be events. A and B is conditionally independent given C, iff
P(A|C)=PA|BnC),
or, equivalently, iff
P(AnB|C)=PA|C)P(B|C).
A and B are independent given C' means that once we learned C, learning B gives us no additional information about A.

Examples:

B The operation of a car's starter motor is conditionally independent its radio given the status of the battery.
B Symptoms are conditionally independent given the disease.
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Random variables 22 / 41

Example: throwing two “fair” dice

In many cases it would be more natural to consider attributes of the outcomes. A random variable is a way of reporting an attribute of the outcome.

L where

We have the state space Q2 = {(7,j) : 1 <4,j < 6} and the (uniform) probability measure P({(,7)}) = 35

(Q,P(Q), P) forms a probability space.

We are interested in the sum of the numbers showing on the dice, defined by define the mapping X : Q — @, X (i,5) =i + j, where Q' = {2,3,...,12}.
It can be seen that this mapping leads a probability space (€2, P()'), P") such that the probability measure is defined as P’ : P(Q') — [0, 1],

P'(A") = P({(i,5) : X(i,j) € A'}) .

For example: P'({11}) = P({(5,6),(6,5)}) = =.
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Preimage mapping

Let X : Q — € be an arbitrary mapping. The preimage mapping X! : P(Y) — P(Q) is defined as
X 1A ={weQ: X(w)e A} .

Q X 94

{(5,6),(6,5)}
{(1,1),(2,2), 3,3)}
{1, 1)}

Note that the preimage of a o-algebra is a o-algebra.

IN2245 - Combinatorial Optimization in Computer Vision
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Random variable

Let (©2,.4) and (€', A’) measurable spaces. A mapping X : (2, 4) — (', A’) is called measurable, if
X 1A ={weQ: X(wed}eA.

A measurable mapping X : (2, 4) — (R, .A’) is called random variable.
Let X : (2, 4) — (', A’) be a random variable and P a measure over A. Then

P'(A') := Px(A4") := P(X~}(4"))

defines a measure over A’.

X
Px is called is called the image measure of P by X. Specially, if P is a probability measure Q /-\) 4
then Px is a probability measure over A’.
LN

A x-1r A
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Example: throwing two “fair” dice
We are given the event spaces = {(i,7) : 1 <i,j <6} and ' = {2,3,...,12}. We assume the uniform probability measure P over (2, P(2)).
Define a mapping X : (2, P(R2)) — (', P()), X(i,j) =i+ j. Is X a random variable?
X 1A ={weQ: X(w)e A} eP(Q)
is satisfied, since for any w’ € Q' one can find an w € Q such that X(w) = w’. Therefore X is measurable, thus it is a random variable.

Moreover, P is a probability measure, hence the image measure Px(A’) = P(X~'(A’)) is a probability measure on (2, P(Q)).
Example: Py ({2,4,5)) = P(X1({2,4,51)) = P({(1,1), (1,3), (2.2), (3,1), (1,4), (2,3), (3,2), (4, 1)}) = & = 2.
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Probability distributions 27 / 41

Probability distribution
A random variable is a measurable mapping from a probability space to a measure space. It is neither a variable nor random.
Let X : (Q, A, P) — (€, A’) be a random variable. Then the image measure Px of P by X is called probability distribution.

Assume an event A € Q and let x = X (A). We use the notation P(z) for P({X = z}), where {X = z}, which means that the mapping X has the value z,
is also considered as an event for an z € ().

Similarly, {X < x}, which corresponds to the set of atomic events {w € Q : X(w) < x}, also defines an event in Q' .

Let X : (2, A4, P) — (€2, A") be a random variable. Then Fp : R — R is called cumulative distribution function of P.
Fp(x)=P(X <z), zeR.

Each probability measure is defined uniquely by its distribution function.
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Properties of the cumulative distributive function
The cumulative distributive function Fp : R — R, Fp(z) = P(X < x) for a probability measure P has the following properties:

1.  Fp is monotonously increasing
2. Fpis left continuous

3. limg_on Fp(z) =0

4. limg o Fp(x) =1

Pla< X <b)=P(X <b)— P(X <a) = Fp(b) — Fp(a) .
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Density function
A random variable X : (2, A) — (2, A’) is said to be discrete random variable if Q' is countable.

Let Fp : R — R be the cumulative distribution function of a probability measure P. A measurable function f(x) is called a density function, if

Fp(z) = J:O fdt, zeR.

A measurable function we mean to be a function with improper Riemann-integral.
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Continuous random variable

A random variable X : (2, A, P) — (R, A’) is called continuous random variable, if it has a density function f(x). Then the following are held:

1. f(=x) is non-negative,

2. §* flx)dz =1,
3. Fpla< X <b) =1 f(z)da,

Proof.
1. Fp is non-negative and monotonously increasing which implies f(x) > 0.
2. -
J f(x)dx = Fp(0) — Fp(—0) =1—-0=1.

—o0

3 b a b
' Fp(a < X <b)=Fp(b) — Fp(a) = J f(z)dzx —f f(z)dz = f f(z)dz .
—0 —0 a
O
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The Normal (Gaussian) distribution

A continuous random variable X : R — R with density function

J@) =7 1277 P G%)

is said the have Normal distribution (or Gaussian distribution with
parameters € R and 0 € R,.

Standard Normal distribution:
pw=0and o=1.

Three-sigma rule of thumb:

68.27% of the area under curve lie within the interval u + o.
95.45% of the area under curve lie within the interval p + 20.
99.73% of the area under curve lie within the interval p + 30.

IN2245 - Combinatorial Optimization in Computer Vision
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Joint distribution

Suppose a probability space (2,4, P). Let X : (2, 4) —» (', A) and Y : (2, 4) — (", A”) be discrete random variables, where x1,x2,... denote the
values of X and yi,%s,... denote the values of Y.

We introduce the notation
pij=PX =xz,Y =y;) i,j=12,...

for the probability of the events {X = z;,Y = y;} := {X = z;} n {Y = y;}.
These probabilities p;; form a distribution, called the joint distribution of X and Y. Therefore,

2P =1
i g
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Marginal distributions

Suppose a probability space (2, A4, P). Let X : (2, A) —» (V. A) and Y : (2, A) — (Q", A”) be discrete random variables, where z1, o, ... denote the
values of X and yi,%s,... denote the values of Y.

The distributions defined by the probabilities
pi=P(X =u1;) and g¢; =P =yj)

are called the marginal distributions of X and of Y, respectively.

Let us consider the marginal distribution of X. Then

Similarly,
g =P =y;) = Y. P(X =2;,Y =y;) = > pij
i [
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Example: marginal distribution

Consider two producing machines creating identical product in a factory. Assume we are given the following table with probabilities

Machine | Machine Il
The product is good 0.56 0.41 0.97
The product is waste 0.01 0.02 0.03
| 057 043 | 1

The marginal distributions of discrete random variables corresponding to the values of {good, waste} and {l, I} are shown in the last column and last row,
respectively.

The following also holds

Zpi :ZP(X ZQLL') :ZZP(X =:L‘Z‘,Y :yi) :ZZPU =1.

i
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Joint density

Suppose a probability space (2,4, P). Let X : (2, 4) —» (2, A") and Y : (2, 4) — (©2”,. A”) be random variables. The joint cumulative distribution
function of X and Y, denoted by Fp : R? — R, is defined as

Fp(z,y) = P(X <z,Y <y) z,yeR.
If both X and Y are continuous random variables, then the joint density function fxy : R> — R is defined as

Fp(z,y) = f_x J_y fxy (u,v)dudo .

The joint density function fxy (z,y) also satisfies the following property:

fo; JOOOO fxy (u,v)dudv =1 .

24
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Marginal densities

Suppose a probability space (2,4, P). Let X : (Q,A) —» (Y, A) and Y : (2, 4) — (", A”) be random variables with joint cumulative distribution
function Fp : R? —» R. The marginal cumulative distribution functions of X and Y are given by

Fp, :=Fp(z,0) = lim Fp(z,y), and

Y—x0

Fpy i=Fp(c0,y) = lim Fp(z,y) .

If both X and Y are continuous random variables with the joint density function Fxy (z,y), then the marginal density functions fx, fy : R — R are

defined as

s = [ peviemay snd ) = [ fortamds.
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Conditional distribution

Suppose a probability space (€2,.4, P). Let X and Y be discrete random variables, where x1,x3,... denote the values of X and y1,ys2,... denote the
values of Y.

The conditional distribution of X given Y is defined by

PX =z |Y =y;) =

Therefore, >, P(X = z; | Y =y;) = 3, Z;:i;k' =1 is also held.
J

The conditional cumulative distribution function is defined as

Fpz|y) = lm Fp(z |y <Y <y +h),

P X <z,y<Y <y+h)
Ply<Y <y+h) '

L Fpe|y<Y <y+h)=P(X <z|y<Y <y+h)=

26
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Conditional density

Suppose a probability space (2,4, P). Let X and Y be random variables with joint density function fxy (z,y). If the marginal density function fy (y) # 0,

then the conditional density function of X given Y is defined as

flxly) =

Ixy(z,y) '

fr(y)

IN2245 - Combinatorial Optimization in Computer Vision

3. Introduction to Probability Theory — 39 / 41

Literature

1. Marek Capiriski and Ekkerhard Kopp. Measure, Integral and Probability. Springer, 1998.

2. Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. The MIT Press, 2009. Note: Chapter 2.1

IN2245 - Combinatorial Optimization in Computer Vision

28

3. Introduction to Probability Theory — 40 / 41



A brain teaser

Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats.

You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat.

% Z
-P -E}

He then says to you, "Do you want to pick door No. 27"

Is it to your advantage to switch your choice?
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