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Introduction

We often need to build a model of the real world
that relates observed measurements x € X to
quantities of interest y € ).
X Yy
f: XY
Running example:
Recognizing man-made structures in images (i.e. binary image segmentation)

Original image Ground truth (24 x 16 blocks)

We have one binary variable per 16-by-16 block of pixels.
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B Undirected graphical models (e.g., Markov random fields)
B Directed graphical models (e.g., Bayesian networks)
W Factor graphs

We will use the following notations

BV denotes a set of output variables (e.g., for pixels) and the
corresponding random variables are denoted by Y;, i € V'

B The output domain ) is given by the product of individual
variable domains ); (e.g., a single label set £), so that
Y=X eV yl

B The input domain X is application dependent (e.g., X is a
set of images)

B The realization Y = y means that Y; = y; forall i e V

B G = (V,€) is an (un)directed graph, where £ encodes the
conditional independence assumption
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Original image Ground truth (24 x 16 blocks)

For each block we assign a random variable Y;. Therefore, V' consists of binary
output variables corresponding to Y;, for all i = 1,...,384.

For each random variable Y; its output domain is ); = {0, 1}, therefore the output
domain in this example is Y = {0, 1}%%

X is a set of images, and an input z € X’ is an image.
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4. Introduction to Graphical Models

Graphical models

Probabilistic graphical models encode a joint
p(z,y) or conditional p(y | =) probability
distribution such that given some observations we
are provided with a full probability distribution
over all feasible solutions.

p(Y[X =z)

The graphical models allow us to encode relationships between a set of random
variables using a concise language, by means of a graph.

Suppose a graph such that for each node a random variable is
assigned. The random variables satisfy conditional
independence assumptions encoded in the graph.

For example: The variables Y; and Y] are conditionally @
independent given Y}, Y;:

Yi LYY, Ye = p(Ye, Y1 | Y5, Y5) = p(Ys | Y5, Ye)p(Yi | Y5, V%) -
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Bayesian networks

Assume a directed, acyclic graphical model G = (V, &), where E <V x V.
The conditional independence assumption is encoded by G that is a variable is
conditionally independent of its non-descendants given its parents.

p(Y = y) = Hp(yi ‘ ypac(i)) ) @

i€V

The factorization is given as

where p(y; | Ypag(i)) is @ conditional probability
distribution on the parents of node i € V' @

For example:

() =pWir Y5, Y i) = W1 1 Yis > Ye) P(Wis Y5 Yk)
=p(yi | yx) (Y v, yx) = p(wr | i) p(ur | Yis v5) p(Yir v5)
=p(y | yr) (Y | vi,y;) p(yi) p(y;) -
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Ground truth (24 x 16 blocks)

Original image

We consider a simple assumption:
man-made structures are clustered locally together.

& consists of edges between 4-connected blocks, which
means that we model the relation between neighboring
blocks only.
G(V,€)
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Markov: random fields

Gibbs: distribution

Tnin

An undirected graphical model G = (V,€) is called Markov Random Field (MRF)
if two nodes are conditionally independent whenever they are not connected. In
other words, for any node Y; in the graph, the local Markov property holds:

p(Yi | Yy) = p(Yi | Y) e e

where N (i) are the neighbors of node i in the graph.
Alternatively, one can use the following equivalent notation: e

Y L Yyva | Yng
where cl(7) = {i} U N(2) is the closed neighborhood of i.
For example:

Vi LYY}, Y = p(Ye, Y0 | V), Ye) = p(Yi | Y5, Yi) p(Yi | Y5, Vi) -
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Hammersley-Clifford theorem

Let G = (V, &) be an undirected graphical model. The Hammersley-Clifford
theorem tells us that the following are equivalent:

B G is an MRF model
B The joint probability distribution P(Y) on G has Gibbs-distribution.

An MRF defines a family of joint probability distributions by means of an
undirected graph G = (V,&), £ = V x V (there are no self-edges), where the
graph encodes conditional independence assumptions between the random
variables corresponding to V.

Since, the potential functions ¥¢(y.) > 0

Yo(yo) = exp(—=Ec(yc)) <  Ec(yc) = —log((¢c(yc))) -
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Factor graphs
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A probability distribution p(y) on an undirected graphical model G = (V. &) is
called Gibbs distribution if it can be factorized into potential functions

e(ye) > 0 defined on cliques (i.e. fully connected subgraph) that cover all nodes
and edges of G. That is,

v =5 [ weluo),

cec(G)

where C(G) denotes the set of all (maximal) cliques and

z=3 1] vole).

yeY CeC(G)

is the normalization constant. Z is also known as partition function.
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Examples

Cliques C(G1): set of nodes V/ < V such that
En(V' xV)y=V'xV' e e @
Here C(G1) = {{’L}v {]}7 {k}v {iyj}a {]7 k}}’ hence G

py) = %1/% (i) () r (yr )i (Yis v) ik (Y5, Y)

Here C(Go) = 210354 (all subsets of V)

1

) =— ] valwa)

Ae2{id k1)

R (URUR U RURG IR R RN RIS o
{iVjV k}’ {i7j7 l}7 {’LV k’ l}’ {J’ k’ l}7 {i7j7 k’ l}}
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Examples

Factor graphs are undirected graphical models that make explicit the
factorization of the probability function.

A factor graph G = (V, F, ) consists of a G
W variable nodes V () and factor nodes F (M),
B edges £ € V x F between variable and factor nodes

B N:F— 2V isthe scope of a factor, defined as the set of
neighboring variables, i.e. N(F) ={ie V : (i,F) € £}.

Factor graph
A family of distribution is defined that factorizes according to

p(y) = % [Tvrtwa) with Z2 =311 ¢rluve) -

FeF ye)y FeF

Each factor I" € F connects a subset of nodes, hence we write F' = {v1,...,vp|}
and yp = YNF) = (yvn . -1yv‘p\)'
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Conditional Random Fields
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Factor graphs are universal, explicit about the factorization, hence it is easier to
work with them.

XL 2%

Examples:

p1(y) :Zili/)ij(yz‘,Z/j)i/)ik(yi,yk)l/liz(ywyl)wjk(ypyk)’l’jl(l/ﬁl/l)?bkl(?/kﬂl)

1
p2(y) :Zibijkz(yi,yj,yk,yz)
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Conditional random fields

We have discussed the joint distribution

p(y) = % [T ¢rtune)

FeF

but we often have access to measurements X = z, hence the conditional
distribution p(Y =y | X = z) can be directly modeled, too. This can be
expressed compactly using conditional random fields (CRF) with the factorization

ply | @) = % [T vryrsar)

FeF
with the partition function depending on zp

Z(x) = ) [ [ vrlyrszr) -

yey FeF

Shaded variables: The
observations X = x.
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Potentials and energy functions m

We typically would like to infer marginal probabilities p(Yr = yp | z) for some
factors F' e F. 1
ply|x) = 7 [ vrrszr)

Assuming ¢F : Yr — Ry, where Yr = Xc ()i is the product domain of the FeF
variables adjacent to F, instead of potentials, we can also work with energies. :_Z(z) exp(— Z Er(yr;zr)) = 70 exp(—E(y; )
We define an energy function Ep : yN(F) — R for each factor F' € F. Fer

for E(y;x) = Y per Er(yr;xr). Hence, p(y | ) is completely determined by
E(y; x). This provides a natural way to quantify prediction uncertainty by means
of marginal distributions p(yr | zr).

Er(yrior) = —log(Yr(yr;zr)) < Yr(yrier) = exp(—=Er(yr;or)) -

Note that the potentials become also functions of (part of) z, i.e. ¥p(yr; zF)
instead of just 1 r(yr). Nevertheless, z is not part of the probability model, i.e. it
is not treated as random variable.
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Energy Minimization m Akt Example: Man-made structure detectionm
Assuming a finite X', the goal is to predict f : X — ) by solving Conditional independences are specified by the factor ] ®
y* = argmax,ey p(y|r) graph, i.e. all blocks only depend on the neighboring ones. o f viaraws
The conditional distribution factorizes (up to pairwise ) pan e
e
argmax p(y|r) = argmax exp(—E(y; 1)) factors) as : :/‘ :/'/
vey vey Z(z) C—a—C—=—(
= argmax exp(—E(y; ) p(y | ) ~ 76 )H% viw) | ulwey)
ye

i€V i€V, jeEN (i)
= argmax —FE(y; z) ]
yey with

= in E(y;x) .
aryggln (y x) Z(iﬂ) = Z H wi(yﬁ zz) H wz] (yza y])

L . . . ye{0,1}384 i€V i€V, jeN (i)
Energy minimization can be interpreted as solving for the most likely state of

factor graph. The corresponding energy function:

In practice, one typically models the energy function directly. E(y;x) = Z E;(ys; xi) + Z Eij(yi,v5)
i€V, i€V, JEN;
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ikt Example: Man-made structure detection m Inference
In order to define energy functions for unary factors, one can consider a set of The goal is to make predictions y € ), as good as possible, about unobserved
functions ¢; : V; x X; — [0;1]: properties for a given data instance z € X.
Eilys; ) = —log ¢i(yi;zi) forallie V. Suppose we are given a graphical model (e.g., a factor graph). Inference means
the procedure to estimate the probability distribution, encoded by the graphical
For pairwise factor energies here we use the Potts model, that is model, for a given data (or observation).

0, ify=y; Maximum A Posteriori (MAP) inference: Given a factor graph and the
1 observation z, find the state y* € ) of maximum probability,

Eij(yi, ;) = lyi # yi] = { otherwise

y* = argmaxp(Y =y | z) = argmin E(y; ) .
The resulting energy function given as yey yey

=D Eilyse) + D) By ys)

i€V i€V,jeN (i)
=Y —loggi(yiz) + Y, lui#yl.
€V i€V,jeN (i)
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Inference (cont.) m Akt Example: Man-made structure detectionm
Probabilistic inference: Given a factor graph and the observation z, find the

value of the log partition function and the marginal distributions for each factor,
Input image Ground truth

log Z(z) = log Z exp(—E(y; ),
yey

wr(yr) =p(Yr=yr|z) YFeF VyreYr.

This typically includes variable marginals, i.e. p; = p(y; | ), to make a single joint
prediction y for all variables.

Both inference problems are known to be NP-hard for general graphs and factors,
but can be tractable if suitably restricted (see for example pseudo boolean H J h

optimization).

MAP inference Probabilistic inference
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