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Introduction
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We often need to build a model of the real world
that relates observed measurements x P X to
quantities of interest y P Y .

Running example:
Recognizing man-made structures in images (i.e. binary image segmentation)

Original image Ground truth (24 ˆ 16 blocks)

We have one binary variable per 16-by-16 block of pixels.

Graphical models
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Probabilistic graphical models encode a joint
ppx, yq or conditional ppy | xq probability
distribution such that given some observations we
are provided with a full probability distribution
over all feasible solutions.

The graphical models allow us to encode relationships between a set of random
variables using a concise language, by means of a graph.

Suppose a graph such that for each node a random variable is
assigned. The random variables satisfy conditional
independence assumptions encoded in the graph.

For example: The variables Yi and Yl are conditionally
independent given Yj , Yk:

Yi KK Yl | Yj , Yk ñ ppYi, Yl | Yj, Ykq “ ppYi | Yj, YkqppYl | Yj , Ykq .

Yi Yj

Yk Yl

Popular classes of graphical models
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■ Undirected graphical models (e.g., Markov random fields)
■ Directed graphical models (e.g., Bayesian networks)
■ Factor graphs

We will use the following notations

■ V denotes a set of output variables (e.g., for pixels) and the
corresponding random variables are denoted by Yi, i P V

■ The output domain Y is given by the product of individual
variable domains Yi (e.g., a single label set L), so that
Y “ Ś

iPV Yi

■ The input domain X is application dependent (e.g., X is a
set of images)

■ The realization Y “ y means that Yi “ yi for all i P V
■ G “ pV, Eq is an (un)directed graph, where E encodes the

conditional independence assumption

Bayesian networks
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Assume a directed, acyclic graphical model G “ pV, Eq, where E Ă V ˆ V .
The conditional independence assumption is encoded by G that is a variable is
conditionally independent of its non-descendants given its parents.

The factorization is given as

ppY “ yq “
ź

iPV
ppyi | ypaGpiqq ,

where ppyi | ypaGpiqq is a conditional probability
distribution on the parents of node i P V
For example:

ppyq “ppyi, yj , yk, ylq “ ppyl | yi, yj , ykq ppyi, yj , ykq
“ppyl | ykq ppyi, yj , ykq “ ppyl | ykq ppyk | yi, yjq ppyi, yjq
“ppyl | ykq ppyk | yi, yjq ppyiq ppyjq .

Example: Man-made structure detection
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Original image Ground truth (24 ˆ 16 blocks)

For each block we assign a random variable Yi. Therefore, V consists of binary
output variables corresponding to Yi, for all i “ 1, . . . , 384.

For each random variable Yi its output domain is Yi “ t0, 1u, therefore the output
domain in this example is Y “ t0, 1u384
X is a set of images, and an input x P X is an image.

Example: Man-made structure detection
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Original image Ground truth (24 ˆ 16 blocks)

We consider a simple assumption:
man-made structures are clustered locally together.

E consists of edges between 4-connected blocks, which
means that we model the relation between neighboring
blocks only.

GpV, Eq



Markov random fields
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An undirected graphical model G “ pV, Eq is called Markov Random Field (MRF)
if two nodes are conditionally independent whenever they are not connected. In
other words, for any node Yi in the graph, the local Markov property holds:

ppYi | YV ztiuq “ ppYi | YNpiqq ,
where Npiq are the neighbors of node i in the graph.
Alternatively, one can use the following equivalent notation:

Yi KK YV zclpiq | YNpiq ,

where clpiq “ tiu YNpiq is the closed neighborhood of i.

Yi Yj

Yk Yl

For example:

Yi KK Yl | Yj , Yk ñ ppYi, Yl | Yj , Ykq “ ppYi | Yj , Ykq ppYl | Yj, Ykq .

Gibbs distribution
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A probability distribution ppyq on an undirected graphical model G “ pV, Eq is
called Gibbs distribution if it can be factorized into potential functions
ψCpyCq ą 0 defined on cliques (i.e. fully connected subgraph) that cover all nodes
and edges of G. That is,

ppyq “ 1

Z

ź

CPCpGq
ψCpyCq ,

where CpGq denotes the set of all (maximal) cliques and

Z “
ÿ

yPY

ź

CPCpGq
ψCpyCq .

is the normalization constant. Z is also known as partition function.

Hammersley-Clifford theorem
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Let G “ pV, Eq be an undirected graphical model. The Hammersley-Clifford
theorem tells us that the following are equivalent:

■ G is an MRF model
■ The joint probability distribution P pY q on G has Gibbs-distribution.

An MRF defines a family of joint probability distributions by means of an
undirected graph G “ pV, Eq, E Ă V ˆ V (there are no self-edges), where the
graph encodes conditional independence assumptions between the random
variables corresponding to V .

Since, the potential functions ψCpycq ą 0

ψCpyCq “ expp´ECpyCqq ô ECpyCq “ ´ logppψCpyCqqq .

Examples
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Cliques CpG1q: set of nodes V 1 Ď V such that
E X pV 1 ˆ V 1q “ V 1 ˆ V 1
Here CpG1q “ ttiu, tju, tku, ti, ju, tj, kuu, hence

ppyq “ 1

Z
ψipyiqψjpyjqψkpykqψijpyi, yjqψjkpyj, ykq

G1

Here CpG2q “ 2ti,j,k,lu (all subsets of V )

ppyq “ 1

Z

ź

AP2ti,j,k,lu
ψApyAq

2ti,j,k,lu “ttiu, tju, tku, tlu, ti, ju, ti, ku, ti, lu, tj, ku, tj, lu,
ti, j, ku, ti, j, lu, ti, k, lu, tj, k, lu, ti, j, k, luu

G2

Factor graphs
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Factor graphs are undirected graphical models that make explicit the
factorization of the probability function.

A factor graph G “ pV,F , Eq consists of

■ variable nodes V (©) and factor nodes F (�),
■ edges E Ď V ˆ F between variable and factor nodes
■ N : F Ñ 2V is the scope of a factor, defined as the set of

neighboring variables, i.e. NpF q “ ti P V : pi, F q P Eu.
Factor graph

A family of distribution is defined that factorizes according to

ppyq “ 1

Z

ź

FPF
ψF pyNpF qq with Z “

ÿ

yPY

ź

FPF
ψF pyNpF qq .

Each factor F P F connects a subset of nodes, hence we write F “ tv1, . . . , v|F |u
and yF “ yNpF q “ pyv1 , . . . , yv|F |q.

Examples
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Factor graphs are universal, explicit about the factorization, hence it is easier to
work with them.

Examples:

p1pyq “ 1

Z1
ψijpyi, yjqψikpyi, ykqψilpyi, ylqψjkpyj , ykqψjlpyj , ylqψklpyk, ylq

p2pyq “ 1

Z2
ψijklpyi, yj , yk, ylq

Conditional Random Fields

Conditional random fields
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We have discussed the joint distribution

ppyq “ 1

Z

ź

FPF
ψF pyNpF qq ,

but we often have access to measurements X “ x, hence the conditional
distribution ppY “ y | X “ xq can be directly modeled, too. This can be
expressed compactly using conditional random fields (CRF) with the factorization

ppy | xq “ 1

Zpxq
ź

FPF
ψF pyF ;xF q

with the partition function depending on xF

Zpxq “
ÿ

yPY

ź

FPF
ψF pyF ;xF q .

Shaded variables: The
observations X “ x.



Potentials and energy functions
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We typically would like to infer marginal probabilities ppYF “ yF | xq for some
factors F P F .

Assuming ψF : YF Ñ R`, where YF “ ˆiPNpF qYi is the product domain of the
variables adjacent to F , instead of potentials, we can also work with energies.

We define an energy function EF : YNpF q Ñ R for each factor F P F .

EF pyF ;xF q “ ´ logpψF pyF ;xF qq ô ψF pyF ;xF q “ expp´EF pyF ;xF qq .

Potentials and energy functions (cont.)

IN2245 - Combinatorial Optimization in Computer Vision 4. Introduction to Graphical Models – 18 / 25

ppy | xq “ 1

Zpxq
ź

FPF
ψF pyF ;xF q

“ 1

Zpxq expp´
ÿ

FPF
EF pyF ;xF qq “ 1

Zpxq expp´Epy;xqq

for Epy;xq “ ř
FPF EF pyF ;xF q. Hence, ppy | xq is completely determined by

Epy;xq. This provides a natural way to quantify prediction uncertainty by means
of marginal distributions ppyF | xF q.
Note that the potentials become also functions of (part of) x, i.e. ψF pyF ;xF q
instead of just ψF pyF q. Nevertheless, x is not part of the probability model, i.e. it
is not treated as random variable.

Energy Minimization
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Assuming a finite X , the goal is to predict f : X Ñ Y by solving
y˚ “ argmaxyPY ppy|xq

argmax
yPY

ppy|xq “ argmax
yPY

1

Zpxq expp´Epy;xqq

“ argmax
yPY

expp´Epy;xqq

“ argmax
yPY

´Epy;xq

“ argmin
yPY

Epy;xq .

Energy minimization can be interpreted as solving for the most likely state of
factor graph.

In practice, one typically models the energy function directly.

Example: Man-made structure detection
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Conditional independences are specified by the factor
graph, i.e. all blocks only depend on the neighboring ones.
The conditional distribution factorizes (up to pairwise
factors) as

ppy | xq “ 1

Zpxq
ź

iPV
ψipyi;xiq

ź

iPV,jPNpiq
ψijpyi, yjq

with

Zpxq “
ÿ

yPt0,1u384

ź

iPV
ψipyi;xiq

ź

iPV,jPNpiq
ψijpyi, yjq

The corresponding energy function:

Epy;xq “
ÿ

iPV
Eipyi;xiq `

ÿ

iPV,jPNi

Eijpyi, yjq .

Example: Man-made structure detection

IN2245 - Combinatorial Optimization in Computer Vision 4. Introduction to Graphical Models – 21 / 25

In order to define energy functions for unary factors, one can consider a set of
functions φi : Yi ˆ Xi Ñ r0; 1s:

Eipyi;xiq “ ´ log φipyi;xiq for all i P V .

For pairwise factor energies here we use the Potts model, that is

Eijpyi, yjq “ Jyi ‰ yjK “
#
0, if yi “ yj

1, otherwise.

The resulting energy function given as

Epy;xq “
ÿ

iPV
Eipyi;xiq `

ÿ

iPV,jPNpiq
Eijpyi, yjq

“
ÿ

iPV
´ log φipyi;xiq `

ÿ

iPV,jPNpiq
Jyi ‰ yjK .

Inference
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The goal is to make predictions y P Y , as good as possible, about unobserved
properties for a given data instance x P X .

Suppose we are given a graphical model (e.g., a factor graph). Inference means
the procedure to estimate the probability distribution, encoded by the graphical
model, for a given data (or observation).

Maximum A Posteriori (MAP) inference: Given a factor graph and the
observation x, find the state y˚ P Y of maximum probability,

y˚ “ argmax
yPY

ppY “ y | xq “ argmin
yPY

Epy;xq .

Inference (cont.)
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Probabilistic inference: Given a factor graph and the observation x, find the
value of the log partition function and the marginal distributions for each factor,

logZpxq “ log
ÿ

yPY
expp´Epy;xqq ,

µF pyF q “ ppYF “ yF | xq @F P F ,@yF P YF .

This typically includes variable marginals, i.e. µi “ ppyi | xq, to make a single joint
prediction y for all variables.

Both inference problems are known to be NP-hard for general graphs and factors,
but can be tractable if suitably restricted (see for example pseudo boolean
optimization).

Example: Man-made structure detection
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Input image Ground truth

MAP inference Probabilistic inference
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