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4. Introduction to Graphical Models

2 /25

Introduction

to quantities of interest y € ).

Running example:
Recognizing man-made structures in images (i.e. binary image segmentation)

We often need to build a model of the real world that relates observed measurements x € X

We have one binary variable per 16-by-16 block of pixels.

iy -y

Original image Ground truth (24 x 16 blocks)

f: X =Y
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Graphical models

Probabilistic graphical models encode a joint p(z,y) or conditional p(y | =) probability
distribution such that given some observations we are provided with a full probability
distribution over all feasible solutions.

p(Y

The graphical models allow us to encode relationships between a set of random variables using a concise language, by means of a graph.

X =)

Suppose a graph such that for each node a random variable is assigned. The random variables satisfy conditional

independence assumptions encoded in the graph. a

For example: The variables Y; and Y are conditionally independent given Y}, Yy: i
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Popular classes of graphical models

B Undirected graphical models (e.g., Markov random fields)
B Directed graphical models (e.g., Bayesian networks)
B Factor graphs

We will use the following notations

BV denotes a set of output variables (e.g., for pixels) and the corresponding random variables are denoted by Y;, i € V'
B The output domain ) is given by the product of individual variable domains ); (e.g., a single label set £), so that
y = XieV yz
B The input domain X is application dependent (e.g., X is a set of images)
The realization Y = y means that Y; = y; forall i e V
B G = (V,&)is an (un)directed graph, where £ encodes the conditional independence assumption
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Bayesian networks

Assume a directed, acyclic graphical model G = (V, &), where Ec V x V.
The conditional independence assumption is encoded by G that is a variable is conditionally independent of its non-descendants given its parents.

The factorization is given as
p(Y =y) =] [pWi | Ypau(s)) »
eV

where p(yi | Ypa,(i)) is @ conditional probability distribution on the parents of node i € V/

For example:

p(Y) =p(vi, v Y- ui) = 2 | vir Y5, k) p(Yi, Yjs Yk)
=p(y1 | yr) p(Wi, vj, uk) =y | y&) vk | v, v5) p(Yi, vj)
=p(ui | yi) Pk | vi-y5) p(ys) p(y;) -
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Example: Man-made structure detection

iy -y

Original image Ground truth (24 x 16 blocks)

For each block we assign a random variable Y;. Therefore, V' consists of binary output variables corresponding to Y;, for all i = 1,...,384.

For each random variable Y; its output domain is ); = {0, 1}, therefore the output domain in this example is ) = {0, 1}3%

X is a set of images, and an input x € X is an image.
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Example: Man-made structure detection

iy -y

Original image Ground truth (24 x 16 blocks)

We consider a simple assumption:
man-made structures are clustered locally together.

& consists of edges between 4-connected blocks, which means that we model the relation between
neighboring blocks only.

G(V,€)
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Markov random fields

An undirected graphical model G = (V,€) is called Markov Random Field (MRF) if two nodes are conditionally independent whenever they are not
connected. In other words, for any node Y; in the graph, the local Markov property holds:

p(Y; | Ying) = p(Y | Y (i) | @ Q

where N (i) are the neighbors of node i in the graph.

Alternatively, one can use the following equivalent notation: a @

Yi L Yiagy | Yvgy
where cl(i) = {i} U N (i) is the closed neighborhood of i.

For example:

Vi LYY, Ve = p(Ya, Vi [ Y5, V) = p(Ya | Y5, Ya) p(Y2 | Y5, Vi) -
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Gibbs distribution

A probability distribution p(Y) on an undirected graphical model G = (V, ) is called Gibbs distribution if it can be factorized into potential functions
Yo (ye) > 0 defined on cliques (i.e. fully connected subgraph) that cover all nodes and edges of G. That is,

H Yo (ye)

CeC(G

where C(G) denotes the set of all (maximal) cliques and

zZ=> chyc

yeY CeC(G

is the normalization constant. Z is also known as partition function.
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Hammersley-Clifford theorem
Let G = (V, &) be an undirected graphical model. The Hammersley-Clifford theorem tells us that the following are equivalent:

B G is an MRF model
B The joint probability distribution P(Y') on G has Gibbs-distribution.

An MREF defines a family of joint probability distributions by means of an undirected graph G = (V, &), £ = V x V (there are no self-edges), where the
graph encodes conditional independence assumptions between the random variables corresponding to V.

Since, the potential functions ¢ (y.) > 0

Yo(ye) = exp(=Ec(yc)) <  Ec(ye) = —log((vc(yc))) -
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Examples
Cliques C(G1): set of nodes V/' < V such that En (V! x V') = V' x V'’ /-—\
Here C(G1) = {{i}, {j}, {k}, {4, 7}, {J, k}}, hence Y, Yi Y
1
p(y) = sz‘(yz‘)@bj(yj)wk(yk)wij(yiayj)¢jk(yjayk) G
Here C(Gy) = 2t4751 (all subsets of V)
1 (—%
) == ] valya)
Ae2{id k1)

IR —({i}, {5}, (K}, {1}, {4, 5}, {4, k), {0, 0}, {5, k), {4, 1,
{7:7].7 k}? {7:7].7 l}7 {17 k? l}7 {j7 k? l}? {ihj? k? l}}

Go
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Factor graphs

Factor graphs are undirected graphical models that make explicit the factorization of the probability function.

A factor graph G = (V, F, &) consists of

B variable nodes V' () and factor nodes F (W), @ @
B edges £ € V x F between variable and factor nodes

B N :F — 2V is the scope of a factor, defined as the set of neighboring variables, i.e. N(F) = {ieV : (i,F) e &}.

Factor graph

A family of distribution is defined that factorizes according to

p(y) = % [T ¢rwna) with 2= T vrlune) -

FeF yeY FeF

Each factor F' € F connects a subset of nodes, hence we write I' = {v1,...,vp|} and yr = ynr) = (Yor - - - ,yvm).
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Examples

Factor graphs are universal, explicit about the factorization, hence it is easier to work with them.

Examples:
1
p(y) = 7z Vi (Wis Y) Wi (i, Y)Y (Yi yO) i W5, Y)Y, Y1) Vi (Y, 1)
1
P2(y) :7¢ijkl(yiayjyykyyl)
2
IN2245 - Combinatorial Optimization in Computer Vision 4. Introduction to Graphical Models — 14 / 25

12



Conditional Random Fields 15 / 25

Conditional random fields

We have discussed the joint distribution

p(y) = 5 [] vrlom)

FeF

but we often have access to measurements X = x, hence the conditional distribution p(Y =y | X = ) can be directly modeled, too. This can be
expressed compactly using conditional random fields (CRF) with the factorization

o |2) = 5= [ vrtrion) @ @
FeF

with the partition function depending on xp

Z(x) =Y | | vrlyrsar) .

ye) FeF

Shaded variables: The observations X = z.
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Potentials and energy functions

We typically would like to infer marginal probabilities p(Yr = yr | ) for some factors F' € F.

Assuming Yp : Vp — Ry, where Vi = X;cn(r)Yi is the product domain of the variables adjacent to [, instead of potentials, we can also work with

energies.

We define an energy function Er : V() — R for each factor F' € F.

Er(yr;or) = —log(Yr(yr;zr)) < Yr(yrizr) = exp(=Er(yr;zr)) -
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Potentials and energy functions (cont.)

1

p(y | z) Z(x g:lbp YF;TF)
1 1
Z(:z) exp(— };]—‘EF YFr;TF)) = 7 exp(—E(y; r))

for E(y; x)
means of marginal distributions p(yr | xF).

i.e. it is not treated as random variable.

= Y per Er(yr;xr). Hence, p(y | x) is completely determined by E(y;x). This provides a natural way to quantify prediction uncertainty by

Note that the potentials become also functions of (part of) z, i.e. ¢p(yr;xF) instead of just ¥ r(yr). Nevertheless, = is not part of the probability model,
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Energy Minimization

Assuming a finite X, the goal is to predict f : X — ) by solving y* = argmax,cy p(y|z)

argmax p(y|r) = argmax —— exp(—E(y;x))

yey yey Z(l‘)
= argmax exp(—E(y;x))
yey
= argmax —FE(y;z)
yey
= argmin E(y;x) .
yey

Energy minimization can be interpreted as solving for the most likely state of factor graph.

In practice, one typically models the energy function directly.

IN2245 - Combinatorial Optimization in Computer Vision
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Example: Man-made structure detection

Conditional independences are specified by the factor graph, i.e. all blocks only depend on the neighboring @ ® O
ones. + i3
The conditional distribution factorizes (up to pairwise factors) as O— = -f,;,\l
1 o,/ 0 /o
) L .
ply|x) = 7@ H%Z)z'(yi,fﬂi) | H | Vij (Yi, y;5) f,-J;‘// I -
eV 1€V,jeN (i) O /,f- O //— O //\-
- 5 S Y.
with T oo et

Z(z) = Z H¢i(yi§xi) H Vij (i, Y5)
)

ye{0,1}384 iV 1€V, JEN (i

The corresponding energy function:
E(y;2) = Y Ei(ysw) + Y, Ei(i,y;) -
€V 1€V, jeN;
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Example: Man-made structure detection

In order to define energy functions for unary factors, one can consider a set of functions ¢; : V; x X; — [0;1]:
E,L(yl,fl‘l) = —log le(yufzz) forallieV .
For pairwise factor energies here we use the Potts model, that is

Eij(yi,y;) = lvi # y5] = .
1, otherwise.

The resulting energy function given as

E(y;x) =Y. Ei(yssw) + Y, Eij(yi yj)

eV ieV,jeN (4)
=Y —log iy )+ D, i # -
5% i€V,jeN (i)
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Inference

The goal is to make predictions y € YV, as good as possible, about unobserved properties for a given data instance z € X.

Suppose we are given a graphical model (e.g., a factor graph). Inference means the procedure to estimate the probability distribution, encoded by the
graphical model, for a given data (or observation).

Maximum A Posteriori (MAP) inference: Given a factor graph and the observation z, find the state y* € ) of maximum probability,

y* = argmax p(Y =y | #) = argmin E(y; z) .
yey yey
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Inference (cont.)

Probabilistic inference: Given a factor graph and the observation z, find the value of the log partition function and the marginal distributions for each

factor,

log Z(x) = log ) exp(—E(y; @) ,
yey

uF(yF) =p(YF = Yr | :L‘) VF e ]:,Vyp € yF .

This typically includes variable marginals, i.e. u; = p(y; | ), to make a single joint prediction y for all variables.
Both inference problems are known to be NP-hard for general graphs and factors, but can be tractable if suitably restricted (see for example pseudo boolean

optimization).

IN2245 - Combinatorial Optimization in Computer Vision 4. Introduction to Graphical Models — 23 / 25

17



Example: Man-made structure detection

Input image Ground truth

MAP inference Probabilistic inference
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