Combinatorial Optimization in Computer Vision (IN2245)

Frank R. Schmidt Csaba Domokos

Winter Semester 2015/2016

4. Introduction to Graphical Models
Introduction
Graphical models
Popular classes of graphical models
Bayesian networks
Example: Man-made structure detection
Example: Man-made structure detection
Markov random fields
Gibbs distribution $\ldots\ldots\ldots\ldots\ldots\ldots\ldots$ 1
Hammersley-Clifford theorem
Examples
Factor graphs
Examples
Conditional Random Fields
Conditional random fields
Potentials and energy functions
Potentials and energy functions (cont.)
Energy Minimization

	Man-made structure detection	
Example:	Man-made structure detection	21
Inference		22
Inference	(cont.)	23
	Man-made structure detection	
Literature		25

4. Introduction to Graphical Models

2 / 25

Introduction

We often need to build a model of the real world that relates observed measurements $x \in \mathcal{X}$ to quantities of interest $y \in \mathcal{Y}$.

Running example:

Recognizing man-made structures in images (i.e. binary image segmentation)

Original image

Ground truth (24×16 blocks)

We have one binary variable per 16-by-16 block of pixels.

IN2245 - Combinatorial Optimization in Computer Vision

4. Introduction to Graphical Models – 3 / 25

Graphical models

Probabilistic graphical models encode a joint p(x,y) or conditional $p(y \mid x)$ probability distribution such that given some observations we are provided with a full probability distribution over all feasible solutions.

The graphical models allow us to encode relationships between a set of random variables using a concise language, by means of a graph.

Suppose a graph such that for each node a random variable is assigned. The random variables satisfy conditional independence assumptions encoded in the graph.

For example: The variables Y_i and Y_l are conditionally independent given Y_i, Y_k :

IN2245 - Combinatorial Optimization in Computer Vision

$$Y_i \perp \!\!\!\perp Y_l \mid Y_i, Y_k \Rightarrow p(Y_i, Y_l \mid Y_i, Y_k) = p(Y_i \mid Y_i, Y_k)p(Y_l \mid Y_i, Y_k)$$
.

4. Introduction to Graphical Models – 4 / 25

 Y_l

Popular classes of graphical models

- Undirected graphical models (e.g., Markov random fields)
- Directed graphical models (e.g., Bayesian networks)
- Factor graphs

We will use the following notations

- \blacksquare V denotes a set of output variables (e.g., for pixels) and the corresponding random variables are denoted by Y_i , $i \in V$
- The output domain \mathcal{Y} is given by the product of individual variable domains \mathcal{Y}_i (e.g., a single label set \mathcal{L}), so that $\mathcal{Y} = \times_{i \in V} \mathcal{Y}_i$
- The input domain \mathcal{X} is application dependent (e.g., \mathcal{X} is a set of images)
- The realization Y = y means that $Y_i = y_i$ for all $i \in V$
- \blacksquare $G = (V, \mathcal{E})$ is an (un)directed graph, where \mathcal{E} encodes the conditional independence assumption

IN2245 - Combinatorial Optimization in Computer Vision

4. Introduction to Graphical Models – 5 / 25

Bayesian networks

Assume a directed, acyclic graphical model $G = (V, \mathcal{E})$, where $\mathcal{E} \subset V \times V$.

The conditional independence assumption is encoded by G that is a variable is conditionally independent of its non-descendants given its parents.

The factorization is given as

$$p(Y = y) = \prod_{i \in V} p(y_i \mid y_{\mathsf{pa}_G(i)}) ,$$

where $p(y_i \mid y_{\mathsf{pa}_G(i)})$ is a conditional probability distribution on the parents of node $i \in V$

For example:

$$p(Y) = p(y_i, y_j, y_k, y_l) = p(y_l \mid y_i, y_j, y_k) \ p(y_i, y_j, y_k)$$

= $p(y_l \mid y_k) \ p(y_i, y_j, y_k) = p(y_l \mid y_k) \ p(y_k \mid y_i, y_j) \ p(y_i, y_j)$
= $p(y_l \mid y_k) \ p(y_k \mid y_i, y_j) \ p(y_i) \ p(y_j)$.

IN2245 - Combinatorial Optimization in Computer Vision

4. Introduction to Graphical Models – 6 / 25

Example: Man-made structure detection

Original image

Ground truth (24×16 blocks)

For each block we assign a random variable Y_i . Therefore, V consists of binary output variables corresponding to Y_i , for all $i=1,\ldots,384$.

For each random variable Y_i its output domain is $\mathcal{Y}_i = \{0,1\}$, therefore the output domain in this example is $\mathcal{Y} = \{0,1\}^{384}$

 \mathcal{X} is a set of images, and an input $x \in \mathcal{X}$ is an image.

IN2245 - Combinatorial Optimization in Computer Vision

4. Introduction to Graphical Models – 7 / 25

Example: Man-made structure detection

Original image

Ground truth (24×16 blocks)

We consider a simple assumption: man-made structures are clustered locally together.

 ${\cal E}$ consists of edges between 4-connected blocks, which means that we model the relation between neighboring blocks only.

IN2245 - Combinatorial Optimization in Computer Vision

4. Introduction to Graphical Models – 8 / 25

Markov random fields

An undirected graphical model $G = (V, \mathcal{E})$ is called **Markov Random Field** (MRF) if two nodes are conditionally independent whenever they are not connected. In other words, for any node Y_i in the graph, the **local Markov property** holds:

$$p(Y_i \mid Y_{V \setminus \{i\}}) = p(Y_i \mid Y_N(i)) ,$$

where N(i) are the neighbors of node i in the graph.

Alternatively, one can use the following equivalent notation:

$$Y_i \perp \!\!\!\perp Y_{V \setminus \mathsf{cl}(i)} \mid Y_{N(i)}$$
,

where $cl(i) = \{i\} \cup N(i)$ is the *closed neighborhood* of i.

For example:

$$Y_i \perp \!\!\!\perp Y_l \mid Y_j, Y_k \Rightarrow p(Y_i, Y_l \mid Y_j, Y_k) = p(Y_i \mid Y_j, Y_k) \ p(Y_l \mid Y_j, Y_k) \ .$$

IN2245 - Combinatorial Optimization in Computer Vision

4. Introduction to Graphical Models – 9 / 25

Gibbs distribution

A probability distribution p(Y) on an undirected graphical model $G = (V, \mathcal{E})$ is called **Gibbs distribution** if it can be factorized into potential functions $\psi_C(y_C) > 0$ defined on cliques (i.e. fully connected subgraph) that cover all nodes and edges of G. That is,

$$p(Y) = \frac{1}{Z} \prod_{C \in \mathcal{C}(G)} \psi_C(y_C) ,$$

where $\mathcal{C}(G)$ denotes the set of all (maximal) cliques and

$$Z = \sum_{y \in \mathcal{Y}} \prod_{C \in \mathcal{C}(G)} \psi_C(y_C) .$$

is the normalization constant. Z is also known as partition function.

IN2245 - Combinatorial Optimization in Computer Vision

4. Introduction to Graphical Models – 10 / 25

Hammersley-Clifford theorem

Let $G = (V, \mathcal{E})$ be an undirected graphical model. The Hammersley-Clifford theorem tells us that the following are equivalent:

- \blacksquare G is an MRF model
- lacktriangle The joint probability distribution P(Y) on G has Gibbs-distribution.

An MRF defines a family of **joint probability distributions** by means of an undirected graph $G = (V, \mathcal{E})$, $\mathcal{E} \subset V \times V$ (there are no self-edges), where the graph encodes conditional independence assumptions between the random variables corresponding to V.

Since, the potential functions $\psi_C(y_c) > 0$

$$\psi_C(y_C) = \exp(-E_C(y_C)) \Leftrightarrow E_C(y_C) = -\log((\psi_C(y_C)))$$
.

IN2245 - Combinatorial Optimization in Computer Vision

4. Introduction to Graphical Models – 11 / 25

Examples

Cliques $\mathcal{C}(G_1)$: set of nodes $V'\subseteq V$ such that $\mathcal{E}\cap (V'\times V')=V'\times V'$ Here $\mathcal{C}(G_1)=\{\{i\},\{j\},\{k\},\{i,j\},\{j,k\}\}$, hence

$$p(y) = \frac{1}{Z}\psi_i(y_i)\psi_j(y_j)\psi_k(y_k)\psi_{ij}(y_i, y_j)\psi_{jk}(y_j, y_k)$$

Here $\mathcal{C}(G_2) = 2^{\{i,j,k,l\}}$ (all subsets of V)

$$p(y) = \frac{1}{Z} \prod_{A \in 2^{\{i,j,k,l\}}} \psi_A(y_A)$$

$$\begin{aligned} 2^{\{i,j,k,l\}} = & \{\{i\},\{j\},\{k\},\{l\},\{i,j\},\{i,k\},\{i,l\},\{j,k\},\{j,l\},\\ & \{i,j,k\},\{i,j,l\},\{i,k,l\},\{j,k,l\},\{i,j,k,l\}\} \end{aligned}$$

Factor graphs

Factor graphs are undirected graphical models that make explicit the factorization of the probability function.

A factor graph $G=(V,\mathcal{F},\mathcal{E})$ consists of

- \blacksquare variable nodes $V\left(\bigcirc\right)$ and factor nodes $\mathcal{F}\left(\blacksquare\right)$,
- edges $\mathcal{E} \subseteq V \times \mathcal{F}$ between variable and factor nodes $N: \mathcal{F} \to 2^V$ is the *scope of a factor*, defined as the set of neighboring variables, i.e. $N(F) = \{i \in V : (i, F) \in \mathcal{E}\}.$

Factor graph

A family of distribution is defined that factorizes according to

$$p(y) = \frac{1}{Z} \prod_{F \in \mathcal{F}} \psi_F(y_{N(F)}) \quad \text{with} \quad Z = \sum_{y \in \mathcal{Y}} \prod_{F \in \mathcal{F}} \psi_F(y_{N(F)}) \;.$$

Each factor $F \in \mathcal{F}$ connects a subset of nodes, hence we write $F = \{v_1, \dots, v_{|F|}\}$ and $y_F = y_{N(F)} = (y_{v_1}, \dots, y_{v_{|F|}})$.

IN2245 - Combinatorial Optimization in Computer Vision

4. Introduction to Graphical Models – 13 / 25

Examples

Factor graphs are universal, explicit about the factorization, hence it is easier to work with them.

Examples:

$$p_1(y) = \frac{1}{Z_1} \psi_{ij}(y_i, y_j) \psi_{ik}(y_i, y_k) \psi_{il}(y_i, y_l) \psi_{jk}(y_j, y_k) \psi_{jl}(y_j, y_l) \psi_{kl}(y_k, y_l)$$

$$p_2(y) = \frac{1}{Z_2} \psi_{ijkl}(y_i, y_j, y_k, y_l)$$

IN2245 - Combinatorial Optimization in Computer Vision

4. Introduction to Graphical Models – 14 / 25

Conditional Random Fields 15 / 25

Conditional random fields

We have discussed the joint distribution

$$p(y) = \frac{1}{Z} \prod_{F \in \mathcal{F}} \psi_F(y_{N(F)}) ,$$

but we often have access to measurements X=x, hence the **conditional distribution** $p(Y=y\mid X=x)$ can be directly modeled, too. This can be expressed compactly using **conditional random fields** (CRF) with the factorization

$$p(y \mid x) = \frac{1}{Z(x)} \prod_{F \in \mathcal{F}} \psi_F(y_F; x_F)$$

with the partition function depending on x_F

$$Z(x) = \sum_{y \in \mathcal{Y}} \prod_{F \in \mathcal{F}} \psi_F(y_F; x_F) .$$

Shaded variables: The observations X = x.

IN2245 - Combinatorial Optimization in Computer Vision

4. Introduction to Graphical Models – 16 / 25

Potentials and energy functions

We typically would like to infer marginal probabilities $p(Y_F = y_F \mid x)$ for some factors $F \in \mathcal{F}$.

Assuming $\psi_F: \mathcal{Y}_F \to \mathbb{R}_+$, where $\mathcal{Y}_F = \times_{i \in N(F)} \mathcal{Y}_i$ is the product domain of the variables adjacent to F, instead of *potentials*, we can also work with *energies*.

We define an energy function $E_F: \mathcal{Y}_{N(F)} \to \mathbb{R}$ for each factor $F \in \mathcal{F}$.

$$E_F(y_F; x_F) = -\log(\psi_F(y_F; x_F)) \quad \Leftrightarrow \quad \psi_F(y_F; x_F) = \exp(-E_F(y_F; x_F)) .$$

IN2245 - Combinatorial Optimization in Computer Vision

4. Introduction to Graphical Models – 17 / 25

Potentials and energy functions (cont.)

$$p(y \mid x) = \frac{1}{Z(x)} \prod_{F \in \mathcal{F}} \psi_F(y_F; x_F)$$
$$= \frac{1}{Z(x)} \exp(-\sum_{F \in \mathcal{F}} E_F(y_F; x_F)) = \frac{1}{Z(x)} \exp(-E(y; x))$$

for $E(y;x) = \sum_{F \in \mathcal{F}} E_F(y_F;x_F)$. Hence, $p(y \mid x)$ is completely determined by E(y;x). This provides a natural way to quantify prediction uncertainty by means of marginal distributions $p(y_F \mid x_F)$.

Note that the potentials become also functions of (part of) x, i.e. $\psi_F(y_F; x_F)$ instead of just $\psi_F(y_F)$. Nevertheless, x is **not** part of the probability model, i.e. it is not treated as random variable.

IN2245 - Combinatorial Optimization in Computer Vision

4. Introduction to Graphical Models – 18 / 25

Energy Minimization

Assuming a finite \mathcal{X} , the goal is to predict $f: \mathcal{X} \to \mathcal{Y}$ by solving $y^* = \operatorname{argmax}_{y \in \mathcal{Y}} p(y|x)$

$$\underset{y \in \mathcal{Y}}{\operatorname{argmax}} \ p(y|x) = \underset{y \in \mathcal{Y}}{\operatorname{argmax}} \ \frac{1}{Z(x)} \exp(-E(y;x))$$

$$= \underset{y \in \mathcal{Y}}{\operatorname{argmax}} \ \exp(-E(y;x))$$

$$= \underset{y \in \mathcal{Y}}{\operatorname{argmax}} \ -E(y;x)$$

$$= \underset{y \in \mathcal{Y}}{\operatorname{argmin}} \ E(y;x) \ .$$

Energy minimization can be interpreted as solving for the most likely state of factor graph.

In practice, one typically models the energy function directly.

IN2245 - Combinatorial Optimization in Computer Vision

4. Introduction to Graphical Models – 19 / 25

Example: Man-made structure detection

Conditional independences are specified by the factor graph, i.e. all blocks only depend on the neighboring ones.

The conditional distribution factorizes (up to pairwise factors) as

$$p(y \mid x) = \frac{1}{Z(x)} \prod_{i \in V} \psi_i(y_i; x_i) \prod_{i \in V, j \in N(i)} \psi_{ij}(y_i, y_j)$$

with

$$Z(x) = \sum_{y \in \{0,1\}^{384}} \prod_{i \in V} \psi_i(y_i; x_i) \prod_{i \in V, j \in N(i)} \psi_{ij}(y_i, y_j)$$

The corresponding energy function:

$$E(y;x) = \sum_{i \in V} E_i(y_i;x_i) + \sum_{i \in \mathcal{V}, j \in N_i} E_{ij}(y_i,y_j).$$

IN2245 - Combinatorial Optimization in Computer Vision

4. Introduction to Graphical Models – 20 / 25

Example: Man-made structure detection

In order to define energy functions for unary factors, one can consider a set of functions $\phi_i: \mathcal{Y}_i \times \mathcal{X}_i \to [0;1]$:

$$E_i(y_i; x_i) = -\log \phi_i(y_i; x_i)$$
 for all $i \in V$.

For pairwise factor energies here we use the Potts model, that is

$$E_{ij}(y_i, y_j) = [y_i \neq y_j] = \begin{cases} 0, & \text{if } y_i = y_j \\ 1, & \text{otherwise.} \end{cases}$$

The resulting energy function given as

$$E(y; x) = \sum_{i \in V} E_i(y_i; x_i) + \sum_{i \in V, j \in N(i)} E_{ij}(y_i, y_j)$$
$$= \sum_{i \in V} -\log \phi_i(y_i; x_i) + \sum_{i \in V, j \in N(i)} [[y_i \neq y_j]].$$

IN2245 - Combinatorial Optimization in Computer Vision

4. Introduction to Graphical Models – 21 / 25

Inference

The goal is to make predictions $y \in \mathcal{Y}$, as good as possible, about unobserved properties for a given data instance $x \in \mathcal{X}$.

Suppose we are given a graphical model (e.g., a factor graph). **Inference** means the procedure to estimate the probability distribution, encoded by the graphical model, for a given data (or observation).

Maximum A Posteriori (MAP) inference: Given a factor graph and the observation x, find the state $y^* \in \mathcal{Y}$ of maximum probability,

$$y^* = \operatorname*{argmax}_{y \in \mathcal{Y}} p(Y = y \mid x) = \operatorname*{argmin}_{y \in \mathcal{Y}} E(y; x) \;.$$

IN2245 - Combinatorial Optimization in Computer Vision

4. Introduction to Graphical Models - 22 / 25

Inference (cont.)

Probabilistic inference: Given a factor graph and the observation x, find the value of the *log partition function* and the *marginal distributions* for each factor,

$$\log Z(x) = \log \sum_{y \in \mathcal{Y}} \exp(-E(y; x)) ,$$

$$\mu_F(y_F) = p(Y_F = y_F \mid x) \quad \forall F \in \mathcal{F}, \forall y_F \in \mathcal{Y}_F .$$

This typically includes variable marginals, i.e. $\mu_i = p(y_i \mid x)$, to make a single joint prediction y for all variables.

Both inference problems are known to be NP-hard for general graphs and factors, but can be tractable if suitably restricted (see for example pseudo boolean optimization).

IN2245 - Combinatorial Optimization in Computer Vision

4. Introduction to Graphical Models – 23 / 25

IN2245 - Combinatorial Optimization in Computer Vision

4. Introduction to Graphical Models – 24 / 25

Literature

Sebastian Nowozin and Christoph H. Lampert.

Structured Prediction and Learning in Computer Vision.

In Foundations and Trends in Computer Graphics and Vision, Volume 6, Number 3-4. Note: Chapter 2.

IN2245 - Combinatorial Optimization in Computer Vision

4. Introduction to Graphical Models – 25 / 25