Frank R. Schmidt Csaba Domokos

Winter Semester 2015/2016

5. The Expectation Maximization Algorithm

We are interested in a method to find the maximum likelihood estimator of a parameter θ of a probability distribution $p(x \mid \theta)$. Reminiscent of naming conventions:

$$p(\theta\mid x) \ = \frac{p(x\mid \theta)p(\theta)}{p(x)} \propto \ p(x\mid \theta) \ \ p(\theta) \ .$$
 Posterior probability Likelihood Prior probability

We are given finite amount of **measurement** (i.e. observed data) x_1, x_2, \ldots , and also know the probability distribution $p(x \mid \theta)$. The maximum likelihood estimate of θ is given by

$$\hat{\theta} \in \operatorname*{argmax}_{\theta} p(x \mid \theta)$$
.

A possible solution: Expectation Maximization Algorithm, which iteratively makes guesses about the data x, and iteratively maximizes $p(x \mid \theta)$ over θ .

Multivariate Gaussian distribution

Assume a D-dimensional random vector $\mathbf{X} = (X_1, \dots, X_D)$, i.e. a vector whose components are random variables, with the joint density function

$$p(x_1,\ldots,x_D) = \frac{1}{\sqrt{|2\pi\Sigma|}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right).$$

 $\mathbf X$ is said to have multivariate Gaussian (or Normal) distribution with parameters $\boldsymbol \mu \in \mathbb R^D$ and $\boldsymbol \Sigma \in \mathbb R^{D \times D}$ assuming that $\boldsymbol \Sigma$ is positive definite.

Reminder. A symmetric $\mathbf{A} \in \mathbb{R}^{n \times n}$ matrix is said to be **positive definite**, if $\mathbf{u}^T \mathbf{A} \mathbf{u} > 0$ for all $\mathbf{u} \in \mathbb{R}^n$.

 μ is called the **mean vector** and Σ is called the **covariance matrix**. We often use the notation $\mathbf{X} \sim \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$ denoting \mathbf{X} has Normal distribution.

Note that the Gaussian distribution has many important analytical properties. For example, it is "closed" under marginalization.

Multivariate Gaussian distribution

Maximum likelihood for the Gaussian

Suppose we have a set of independent and identically distributed (i.i.d.) data samples $\{\mathbf{x}_1,\ldots,\mathbf{x}_N\}$ drawn from a Gaussian distribution. The data set can be represented as an $\begin{bmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_N \end{bmatrix}^T = \mathbf{X} \in \mathbb{R}^{N \times D}$ matrix.

We are interested to estimate the parameters μ and Σ with the maximum likelihood framework. The log-likelihood function is given by

$$\ln p(\mathbf{X} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \ln \prod_{n=1}^{N} p(\mathbf{x}_n \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$= \sum_{n=1}^{N} \ln \left\{ \frac{1}{\sqrt{|2\pi\boldsymbol{\Sigma}|}} \exp\left(-\frac{1}{2}(\mathbf{x}_n - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}_n - \boldsymbol{\mu})\right) \right\}$$

$$= \sum_{n=1}^{N} \left\{ -\frac{1}{2} \ln \left((2\pi)^D |\boldsymbol{\Sigma}| \right) - \frac{1}{2} (\mathbf{x}_n - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}_n - \boldsymbol{\mu}) \right\}$$

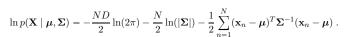
Maximum likelihood for the Gaussian (cont.)

Multivariate Gaussian GMM Expectation EM algorithm

$$\begin{split} \ln p(\mathbf{X} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) &= \sum_{n=1}^{N} \left\{ -\frac{1}{2} \ln \left((2\pi)^{D} |\boldsymbol{\Sigma}| \right) - \frac{1}{2} (\mathbf{x}_{n} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{n} - \boldsymbol{\mu}) \right\} \\ &= \sum_{n=1}^{N} \left\{ -\frac{D}{2} \ln(2\pi) - \frac{1}{2} \ln(|\boldsymbol{\Sigma}|) - \frac{1}{2} (\mathbf{x}_{n} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{n} - \boldsymbol{\mu}) \right\} \\ &= -\frac{ND}{2} \ln(2\pi) - \frac{N}{2} \ln(|\boldsymbol{\Sigma}|) - \frac{1}{2} \sum_{n=1}^{N} (\mathbf{x}_{n} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{n} - \boldsymbol{\mu}). \end{split}$$

Maximum likelihood for μ

Multivariate Gaussian GMM Expectation EM algorithm



Setting the derivative of the log-likelihood function w.r.t. μ to 0, we obtain

$$\begin{split} \frac{\partial}{\partial \boldsymbol{\mu}} \ln p(\mathbf{X} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) &= \frac{-1}{2} \sum_{n=1}^{N} \frac{\partial}{\partial \boldsymbol{\mu}} \left(\mathbf{x}_{n}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{n} - \mathbf{x}_{n}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} - \boldsymbol{\mu}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{n} - \boldsymbol{\mu}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} \right) \\ &= -\frac{1}{2} \sum_{n=1}^{N} \left(-\mathbf{x}_{n}^{T} \boldsymbol{\Sigma}^{-1} - \mathbf{x}_{n}^{T} \boldsymbol{\Sigma}^{-1} - 2 \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} \right) \\ &= \sum_{n=1}^{N} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{n} - \boldsymbol{\mu}) = 0 \quad \Rightarrow \quad \boldsymbol{\mu} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n}. \end{split}$$

The maximum likelihood estimator for μ is simply given by the center of the mass of the data, i.e. the sample mean.

$$\ln p(\mathbf{X} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = -\frac{ND}{2} \ln(2\pi) - \frac{N}{2} \ln(|\boldsymbol{\Sigma}|) - \frac{1}{2} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x}_n - \boldsymbol{\mu}) .$$

Setting the derivative of the log-likelihood function w.r.t. Σ to 0, we obtain

$$\begin{split} \frac{\partial}{\partial \boldsymbol{\Sigma}} \ln p(\mathbf{X} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) &= -\frac{N}{2} \frac{\partial}{\partial \boldsymbol{\Sigma}} \ln(|\boldsymbol{\Sigma}|) - \frac{1}{2} \sum_{n=1}^{N} \frac{\partial}{\partial \boldsymbol{\Sigma}} \left((\mathbf{x}_{n} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{n} - \boldsymbol{\mu}) \right) \\ &= -\frac{N}{2} \frac{1}{|\boldsymbol{\Sigma}|} |\boldsymbol{\Sigma}| \boldsymbol{\Sigma}^{-1} - \frac{1}{2} \sum_{n=1}^{N} -\boldsymbol{\Sigma}^{-T} (\mathbf{x}_{n} - \boldsymbol{\mu}) (\mathbf{x}_{n} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-T} \\ &= -\frac{N}{2} \boldsymbol{\Sigma}^{-1} + \frac{1}{2} \sum_{n=1}^{N} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{n} - \boldsymbol{\mu}) (\mathbf{x}_{n} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1} \end{split}$$

The geometry of the Multivariate Gaussian distribution

Multivariate Gaussian

Let us consider the following form

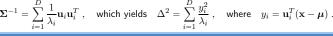
$$\Delta = \sqrt{(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})},$$

which is called the Mahalanobis-distance from μ to ${\bf x}$. In case of $\Sigma=I$ we get the Euclidean-distance. Note that the quantity Δ^2 appears in the exponent in the

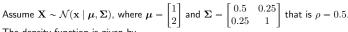
The covariance matrix Σ is a real, symmetric matrix, hence its

- eigenvalues $\lambda_1, \ldots, \lambda_D$ are real,
- eigenvectors $\mathbf{u}_1,\dots,\mathbf{u}_D\in\mathbb{R}^D$ from an orthonormal set.

Therefore $\mathbf{\Sigma}^{-1}$ can be written as

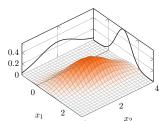


Example: 2D Gaussian and its marginals *



The density function is given by

$$p(x_1, x_2) = \frac{1}{\pi \sqrt{0.75}} \exp\left(-\frac{8(x_1 - 1)^2}{3} + \frac{4(x_1 - 1)(x_2 - 2)}{3} - \frac{2(x_2 - 2)^2}{3}\right) ,$$



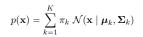
and the marginal distributions are

$$\begin{split} p_{X_1}(x_1) &= \frac{1}{0.5\sqrt{2\pi}} \exp\left(-\frac{(x_1-1)^2}{0.5}\right) \;, \\ p_{X_2}(x_2) &= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x_2-2)^2}{2}\right) \;. \end{split}$$

Mixtures of Gaussians

GMM

While the Gaussian distribution has some important analytical properties, it suffers from limitations when it comes to modelling real data sets. However the linear **combination of Gaussians** can give rise to very complex densities. Let us consider a superposition of K Gaussian p(x)densities



Mixture of three Gaussians

is called a mixture of Gaussians.

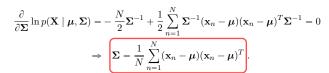
The parameters π_k are called **mixing coefficients**.

$$1 = \int_{\mathbb{R}^D} p(\mathbf{x}) d\mathbf{x} = \int_{\mathbb{R}^D} \sum_{k=1}^K \pi_k \; \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) d\mathbf{x} = \sum_{k=1}^K \pi_k \; .$$

All the density functions are non-negative, hence $\pi_k \geqslant 0$, therefore

$$0\leqslant \pi_k\leqslant 1\quad\text{for all}\quad k=1,\dots,K\;.$$

Maximum likelihood for Σ (cont.)



This is, by definition, called the sample covariance matrix of the data.

Two dimensional Gaussian distribution *

The density function of the two dimensional Gaussian distribution is given by

$$p(x_1, x_2) = \frac{1}{2\pi\sqrt{|\Sigma|}} \exp\left(-\frac{1}{2} \begin{bmatrix} x_1 - \mu_1 & x_2 - \mu_2 \end{bmatrix} \Sigma^{-1} \begin{bmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{bmatrix}\right) ,$$

$$\text{where } \pmb{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \text{ and } \pmb{\Sigma} = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix} \text{ for } \sigma_1, \sigma_2 > 0 \text{ and } -1 < \rho < 1.$$

Note that this density function can be written equivalently as

$$p(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1 - \rho^2}} e^{-\frac{1}{2(1 - \rho^2)} \left(\frac{(x_1 - m_1)^2}{\sigma_1^2} - 2\rho \frac{(x_1 - m_1)(x_2 - m_2)}{\sigma_1\sigma_2} + \frac{(x_2 - m_2)^2}{\sigma_2^2}\right)}.$$

Mixtures of Gaussians

Mixtures of Gaussians (cont.)

We are provided with the joint distribution

$$p(\mathbf{x}) = \sum_{k=1}^K p(k, \mathbf{x}) = \sum_{k=1}^K p(k) p(\mathbf{x} \mid k) = \sum_{k=1}^K \pi_k \; \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \; .$$

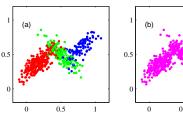
One can view

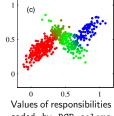
- $\pi_k = p(k)$ as the prior probability of picking the $k^{\rm th}$ component;
- $\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = p(\mathbf{x} \mid k)$ as the probability of \mathbf{x} conditioned on k.

The posterior probabilities $p(k \mid \mathbf{x})$, a.k.a. **responsibilities**, are denoted by $\gamma_k(\mathbf{x})$ and show the probability that a given sample ${f x}$ belongs to the $k^{\sf th}$ component.

$$\begin{split} \gamma_k(\mathbf{x}) & \stackrel{\Delta}{=} p(k \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid k)p(k)}{p(\mathbf{x})} = \frac{p(\mathbf{x} \mid k)p(k)}{\sum_{l=1}^K p(l, \mathbf{x})} = \frac{p(k)p(\mathbf{x} \mid k)}{\sum_{l=1}^K p(l)p(\mathbf{x} \mid l)} \\ & = \frac{\pi_k \ \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{l=1}^K \pi_l \ \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_l, \boldsymbol{\Sigma}_l)} \end{split}$$

Example: Mixture of three 2D Gaussians





Samples from $p(k)p(\mathbf{x} \mid k)$

Samples from $p(\mathbf{x})$

coded by RGB colors $\begin{bmatrix} \gamma_1(\mathbf{x}) & \gamma_2(\mathbf{x}) & \gamma_3(\mathbf{x}) \end{bmatrix}$.

THE PARTY

Iso-countours of

Surface plot of $p(\mathbf{x})$

Maximum likelihood for mixture of Gaussians

Suppose we have a set of *i.i.d.* data samples $\{\mathbf{x}_1,\ldots,\mathbf{x}_N\}$ drawn from a mixture of Gaussians. The data set is represented by $\mathbf{X} \in \mathbb{R}^{N \times D}$.

The goal is to find the parameter vector $oldsymbol{ heta}=(\pi,\mu,oldsymbol{\Sigma})$, specifying the model from which the samples \mathbf{x}_n have most likely been drawn. We may find the parameters which maximize the likelihood function

$$\hat{\boldsymbol{\theta}} \in \operatorname*{argmax}_{\boldsymbol{\theta}} p(\mathbf{X} \mid \boldsymbol{\theta}) = \operatorname*{argmax}_{\boldsymbol{\theta}} \prod_{n=1}^{N} p(\mathbf{x}_n \mid \boldsymbol{\theta}) = \operatorname*{argmax}_{\boldsymbol{\theta}} \prod_{n=1}^{N} \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$$

To simplify the optimization we use the log-likelihood function $\mathcal{L}(oldsymbol{ heta})$

$$\hat{\boldsymbol{\theta}} \in \operatorname*{argmax}_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}) = \operatorname*{argmax}_{\boldsymbol{\theta}} \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_{k} \, \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right\} \, .$$

Note that there is no closed-form solution for this model ⇒ iterative solution.

Maximum likelihood for μ (cont.) *

Let us now consider the derivative of a Gaussian only

$$\begin{split} \frac{\partial}{\partial \boldsymbol{\mu}_k} \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = & \frac{1}{\sqrt{|2\pi\boldsymbol{\Sigma}_k|}} \, \frac{\partial}{\partial \boldsymbol{\mu}_k} \exp\Big(-\frac{1}{2} (\mathbf{x}_n - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_k) \Big) \\ = & \frac{1}{\sqrt{|2\pi\boldsymbol{\Sigma}_k|}} \exp\Big(\frac{-1}{2} (\mathbf{x}_n - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_k) \Big) \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_k) \\ = & \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_k) \; . \end{split}$$

By substituting back we get

$$\frac{\partial}{\partial \boldsymbol{\mu}_{k}} \mathcal{L}(\boldsymbol{\theta}) = \sum_{n=1}^{N} \underbrace{\frac{\pi_{k} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})}{\sum_{l=1}^{K} \pi_{l} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{l}, \boldsymbol{\Sigma}_{l})}}_{\boldsymbol{\Sigma}_{k}^{-1}(\mathbf{x}_{n} - \boldsymbol{\mu}_{k})} \mathbf{\Sigma}_{k}^{-1}(\mathbf{x}_{n} - \boldsymbol{\mu}_{k}).$$

Maximum likelihood for Σ *

$$\hat{\boldsymbol{\theta}} \in \operatorname*{argmax}_{\boldsymbol{\theta}} \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_{k} \, \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right\} \quad \text{s.t.} \quad \pi_{k} \geqslant 0, \sum_{k=1}^{K} \pi_{k} = 1 \; .$$

We calculate the derivative of $\mathcal{L}(oldsymbol{ heta})$ w.r.t. $oldsymbol{\Sigma}_k$

$$\frac{\partial}{\partial \Sigma_k} \mathcal{L}(\boldsymbol{\theta}) = \sum_{n=1}^{N} \frac{\pi_k}{\sum_{l=1}^{K} \pi_l \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_l, \boldsymbol{\Sigma}_l)} \frac{\partial}{\partial \Sigma_k} \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Let us now consider the derivative of a Gaussian only

$$\frac{\partial}{\partial \Sigma_k} \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \frac{\partial}{\partial \Sigma_k} \frac{1}{\sqrt{|2\pi \Sigma_k|}} \exp\left(-\frac{1}{2} (\mathbf{x}_n - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_k)\right).$$

Maximum likelihood for μ *

Iso-contours of $p(\mathbf{x})$

Example: Mixture of three 2D Gaussians

$$\hat{\boldsymbol{\theta}} \in \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_{k} \, \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right\} \quad \text{s.t.} \quad \pi_{k} \geqslant 0, \sum_{k=1}^{K} \pi_{k} = 1.$$

We calculate the derivative of $\mathcal{L}(oldsymbol{ heta})$ w.r.t. $oldsymbol{\mu}_k$

$$\frac{\partial}{\partial \boldsymbol{\mu}_{k}} \mathcal{L}(\boldsymbol{\theta}) = \sum_{n=1}^{N} \frac{1}{\sum_{l=1}^{K} \pi_{l} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{l}, \boldsymbol{\Sigma}_{l})} \frac{\partial}{\partial \boldsymbol{\mu}_{k}} \sum_{k=1}^{K} \pi_{k} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})$$

$$= \sum_{n=1}^{N} \frac{\pi_{k}}{\sum_{l=1}^{K} \pi_{l} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{l}, \boldsymbol{\Sigma}_{l})} \frac{\partial}{\partial \boldsymbol{\mu}_{k}} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})$$

Maximum likelihood for μ (cont.) *

Setting the derivative of $\mathcal{L}(oldsymbol{ heta})$ w.r.t. $oldsymbol{\mu}_k$ to 0, we obtain

$$\frac{\partial}{\partial \boldsymbol{\mu}_k} \mathcal{L}(\boldsymbol{\theta}) = \sum_{n=1}^N \gamma_{nk} \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_k) = 0$$

$$\sum_{n=1} \gamma_{nk} (\mathbf{x}_n - \boldsymbol{\mu}_k) = 0 \quad = \quad$$

$$\sum_{n=1}^{N} \gamma_{nk}(\mathbf{x}_n - \boldsymbol{\mu}_k) = 0 \quad \Rightarrow \qquad \boldsymbol{\mu}_k = \frac{\sum_{n=1}^{N} \gamma_{nk} \, \mathbf{x}_n}{\sum_{n=1}^{N} \gamma_{nk}}$$

Maximum likelihood for Σ (cont.) *

$$\frac{\partial}{\partial \boldsymbol{\Sigma}_k} \frac{1}{\sqrt{|2\pi\boldsymbol{\Sigma}_k|}} = \frac{1}{(2\pi)^{\frac{D}{2}}} \frac{\partial}{\partial \boldsymbol{\Sigma}_k} |\boldsymbol{\Sigma}_k|^{-\frac{1}{2}} = \frac{1}{(2\pi)^{\frac{D}{2}}} \frac{-1}{2} |\boldsymbol{\Sigma}_k|^{-\frac{3}{2}} |\boldsymbol{\Sigma}_k| \boldsymbol{\Sigma}_k^{-1} = \frac{-\boldsymbol{\Sigma}_k^{-1}}{2\sqrt{|2\pi\boldsymbol{\Sigma}_k|}}.$$

$$\begin{split} &\frac{\partial}{\partial \boldsymbol{\Sigma}_k} \exp \left(-\frac{1}{2} (\mathbf{x}_n - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_k) \right) \\ &= \exp \left(-\frac{1}{2} (\mathbf{x}_n - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_k) \right) \frac{\partial}{\partial \boldsymbol{\Sigma}_k} \left(-\frac{1}{2} (\mathbf{x}_n - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_k) \right) \\ &= \exp \left(-\frac{1}{2} (\mathbf{x}_n - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_k) \right) \frac{-1}{2} (-\boldsymbol{\Sigma}_k^{-T}) (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu})^T \boldsymbol{\Sigma}_k^{-T} \\ &= \frac{1}{2} \exp \left(-\frac{1}{2} (\mathbf{x}_n - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_k) \right) \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} \ . \end{split}$$

Multivariate Gaussia

MM Expectation

EM algorithm

Now we are at the position to calculate the derivative of a Gaussian w.r.t. Σ

$$\begin{split} &\frac{\partial}{\partial \boldsymbol{\Sigma}_k} \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \\ = &\frac{\partial}{\partial \boldsymbol{\Sigma}_k} \left(\frac{1}{\sqrt{|2\pi\boldsymbol{\Sigma}_k|}} \exp\left(-\frac{1}{2} (\mathbf{x}_n - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_k) \right) \right) \\ = &\frac{-\boldsymbol{\Sigma}_k^{-1}}{2\sqrt{|2\pi\boldsymbol{\Sigma}_k|}} \exp\left(-\frac{1}{2} (\mathbf{x}_n - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_k) \right) \\ &+ \frac{1}{2} \frac{1}{\sqrt{|2\pi\boldsymbol{\Sigma}_k|}} \exp\left(-\frac{1}{2} (\mathbf{x}_n - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_k) \right) \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} \\ = &- \frac{1}{2} \boldsymbol{\Sigma}_k^{-1} \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) + \frac{1}{2} \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1}. \end{split}$$

IN2245 - Combinatorial Optimization in Computer Vision

The Expectation Maximization Algorithm – 25 / 39

Maximum likelihood for π *

Multivariate Gaussian

MM Expectation

EM algorithm

To integrate the conditions on π we use the Lagrange multiplier method

$$\hat{\boldsymbol{\theta}} \in \operatorname*{argmax} \sum_{n=1}^{N} \ln \sum_{k=1}^{K} \pi_{k} \; \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) + \lambda (1 - \sum_{k=1}^{K} \pi_{k}) \; .$$

Setting the derivative w.r.t. π_k to 0, we obtain

$$\sum_{n=1}^{N} \frac{\mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})}{\sum_{l=1}^{K} \pi_{l} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{l}, \boldsymbol{\Sigma}_{l})} - \lambda = 0$$

$$\sum_{n=1}^{N} \frac{\sum_{l=1}^{K} \pi_{l} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})}{\sum_{l=1}^{K} \pi_{l} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{l}, \boldsymbol{\Sigma}_{l})} = \lambda \sum_{l=1}^{K} \pi_{l} \quad \Rightarrow \quad N = \lambda$$

$$\sum_{n=1}^{N} \underbrace{\frac{\pi_{k} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})}{\sum_{l=1}^{K} \pi_{l} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{l}, \boldsymbol{\Sigma}_{l})}}_{\gamma_{nk}} - \pi_{k} N = 0 \quad \Rightarrow \quad \boxed{\pi_{k} = \frac{\sum_{n=1}^{N} \gamma_{nk}}{N}}$$

N2245 - Combinatorial Optimization in Computer Vision

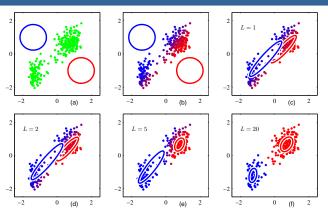
5. The Expectation Maximization Algorithm – 27 /

Example

Multivariate Gaussian

GMM Expectation

EM algorithm



12245 - Combinatorial Optimization in Computer Vision

5 The Expectation Maximization Algorithm = 29 / 3

Expectation

Multivariate Gaussian

GMM Expectati

EM algorithr

The expectation of a random variable is intuitively the long-run average value of repetitions of the experiment it represents.

Let X be a discrete random variable taking values x_1,x_2,\ldots with probabilities p_1,p_2,\ldots , respectively. The **expectation** (or **expected value**) of X is defined as

$$\mathbb{E}[X] = \sum_{i=1}^{\infty} x_i p_i \;,$$

assuming that this series is absolute convergent (that is $\sum_{i=1}^{\infty} |x_i| p_i$ is convergent).

Example: throwing two "fair" dice and the value of X is is the sum the numbers showing on the dice.

$$\begin{split} \mathbb{E}[X] = & 2\frac{1}{36} + 3\frac{2}{36} + 4\frac{3}{36} + 5\frac{4}{36} + 6\frac{5}{36} \\ & + 7\frac{6}{36} + 8\frac{5}{36} + 9\frac{4}{36} + 10\frac{3}{36} + 11\frac{2}{36} + 12\frac{1}{36} = 7 \; . \end{split}$$

Maximum likelihood for Σ (cont.) *

Multivariate Gaussian

Expectation

FM algorithm

Setting the derivative of $\mathcal{L}(\boldsymbol{\theta})$ w.r.t. $\boldsymbol{\Sigma}_k$ to 0, we obtain

$$\begin{split} \frac{\partial}{\partial \boldsymbol{\Sigma}_{k}} \mathcal{L}(\boldsymbol{\theta}) &= \sum_{n=1}^{N} \frac{\pi_{k}}{\sum_{l=1}^{K} \pi_{l} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{l}, \boldsymbol{\Sigma}_{l})} \frac{\partial}{\partial \boldsymbol{\Sigma}_{k}} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \\ &= -\frac{1}{2} \sum_{n=1}^{N} \frac{\boldsymbol{\Sigma}_{k}^{-1} \pi_{k} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})}{\sum_{l=1}^{K} \pi_{l} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{l}, \boldsymbol{\Sigma}_{l})} \\ &+ \frac{1}{2} \sum_{n=1}^{N} \frac{\pi_{k} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \boldsymbol{\Sigma}_{k}^{-1}(\mathbf{x}_{n} - \boldsymbol{\mu}_{k})(\mathbf{x}_{n} - \boldsymbol{\mu}_{k})^{T} \boldsymbol{\Sigma}_{k}^{-1}}{\sum_{l=1}^{K} \pi_{l} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{l}, \boldsymbol{\Sigma}_{l})} \\ &= \frac{-\boldsymbol{\Sigma}_{k}^{-1}}{2} \sum_{n=1}^{N} \gamma_{nk} + \frac{\boldsymbol{\Sigma}_{k}^{-1}}{2} \sum_{n=1}^{N} \gamma_{nk}(\mathbf{x}_{n} - \boldsymbol{\mu}_{k})(\mathbf{x}_{n} - \boldsymbol{\mu}_{k})^{T} \boldsymbol{\Sigma}_{k}^{-1} = 0 \\ &\Rightarrow \left[\boldsymbol{\Sigma}_{k} = \frac{\sum_{n=1}^{N} \gamma_{nk}(\mathbf{x}_{n} - \boldsymbol{\mu}_{k})(\mathbf{x}_{n} - \boldsymbol{\mu}_{k})^{T}}{\sum_{n=1}^{N} \gamma_{nk}} \right]. \end{split}$$

IN2245 - Combinatorial Optimization in Computer Vision

The Expectation Maximization Algorithm – 26 / 3

The EM Algorithm for mixtures of Gaussians

Multivariate Gaussian

GMM

Expectation

EM algorithm

- 1: Initialize the means $oldsymbol{\mu}_k$, covariances $oldsymbol{\Sigma}_k$ and mixing coefficients π_k
- 2: repeat
- 3: **E step**. Evaluate the responsibilities using the current parameter values

$$\gamma_{nk} = \frac{\pi_k \ \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{l=1}^K \pi_l \ \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_l, \boldsymbol{\Sigma}_l)}$$

4: M step. Re-estimate the parameters using the current responsibilities

$$\begin{split} \boldsymbol{\mu}_k^{\text{new}} &= \frac{\sum_{n=1}^N \gamma_{nk} \mathbf{x}_n}{\sum_{n=1}^N \gamma_{nk}} \;, \quad \boldsymbol{\Sigma}_k^{\text{new}} &= \frac{\sum_{n=1}^N \gamma_{nk} (\mathbf{x}_n - \boldsymbol{\mu}_k^{\text{new}}) (\mathbf{x}_n - \boldsymbol{\mu}_k^{\text{new}})^T}{\sum_{n=1}^N \gamma_{nk}} \\ \boldsymbol{\pi}_k^{\text{new}} &= \frac{\sum_{n=1}^N \gamma_{nk}}{N} \end{split}$$

5: **until** convergence of either the parameters $oldsymbol{ heta}$ or the log likelihood $\mathcal{L}(oldsymbol{ heta})$

N2245 - Combinatorial Optimization in Computer Visi

THE

Multivariate Gaussia

GN GN

Expectati

EM algorit

Expectation

Expectation (cont.)

A land of the land

Expectation El

Let X be a (continuous) random variable with density function f(x). The ${\bf expectation}$ of X is defined as

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx ,$$

assuming that this integral is absolutely convergent (that is the value of the integral $\int_{-\infty}^{\infty}|x\cdot f(x)|\mathrm{d}x=\int_{-\infty}^{\infty}|x|\cdot f(x)\mathrm{d}x$ is finite).

Suppose a random variable X with density function f(x). The expected value of a function $g(x):\mathbb{R}\to\mathbb{R}$ is defined as

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f(x) dx ,$$

assuming that this integral is absolutely convergent.

Conditional expectation

Let (X,Y) be a discrete random vector. The conditional expectation of X given the event $\{Y = y\}$ is defined as

$$\mathbb{E}[X \mid Y = y] = \sum_{i=1}^{\infty} x_i P(X = x_i \mid Y = y) ,$$

assuming that this series is absolutely convergent.

Let (X,Y) be a (continuous) random vector with joint density function $f_{XY}(x,y)$. The **conditional expectation** of X given the event $\{Y = y\}$ is defined as

$$\mathbb{E}[X \mid Y = y] = \int_{-\infty}^{\infty} x \cdot f_{X|Y}(x \mid Y = y) dx,$$

assuming that this integral is absolutely convergent.

The Expectation Maximization

algorithm

The EM algorithm

2: $t \rightarrow 0$

Ultra.

- 3: repeat
- $t \rightarrow t + 1$
- **E step**. Evaluate $q^{(t-1)}(\mathbf{Z}) \stackrel{\Delta}{=} p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{(t-1)})$
- **M step**. Evaluate $\theta^{(t)}$ given by

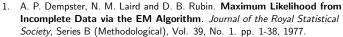
$$\boldsymbol{\theta}^{(t)} = \operatorname*{argmax}_{\boldsymbol{\theta}} Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t-1)})$$

where

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t-1)}) = \sum_{\mathbf{Z}} p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{(t-1)}) \ln p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})$$

7: **until** convergence of either the parameters $m{ heta}$ or the log likelihood $\mathcal{L}(m{ heta};\mathbf{X})$

Literature *



Christopher Bishop. Pattern Recognition and Machine Learning. Springer, 2006. Note: Chapter 9.

Frank Dellaert. The Expectation Maximization Algorithm. TechRep: GIT-GVU-02-20, Georgia Institute of Technology, Atlanta, GA, USA, 2002.

Shane M. Haas. The Expectation-Maximization and Alternating Minimization Algorithms. Unpublished, 2002.

Yihua Chen and Maya R. Gupta. EM Demystified: AnExpectation-Maximization Tutorial. TechRep: UWEETR-2010-0002, University of Washington, Seattle, WA, USA, 2009.

Conditional expectation (cont.)

Suppose a (continuous) random vector (X,Y) with joint density function $f_{XY}(x,y)$. The conditional expectation of a function $g(x): \mathbb{R} \to \mathbb{R}$ given the event $\{Y = y\}$ is defined as

$$\mathbb{E}[g(X)\mid Y=y] = \int_{-\infty}^{\infty} g(x) \cdot f_{X\mid Y}(x\mid Y=y) \mathrm{d}x \; ,$$

assuming that this integral is absolutely convergent.

THE .

Suppose we are given a set of *i.i.d.* data samples $\{\mathbf{x}_1,\ldots,\mathbf{x}_N\}$ represented by the matrix $\mathbf{X} \in \mathbb{R}^{N \times D}$. The samples are drawn from a model (e.g., mixture of Gaussians) given by its parameters heta

Latent variables

There are two main applications of the EM algorithm:

- The data has missing values, due to limitations of the observation process.
- The likelihood function can be simplified by assuming missing values.

Latent variables gathering the missing values are represented by a matrix ${f Z}$. We generally want to maximize the posterior probability

$$\hat{\boldsymbol{\theta}} \in \operatorname*{argmax}_{\boldsymbol{\theta}} p(\boldsymbol{\theta} \mid \mathbf{X}) = \operatorname*{argmax}_{\boldsymbol{\theta}} \sum_{\mathbf{Z}} p(\boldsymbol{\theta}, \mathbf{Z} \mid \mathbf{X}) \; .$$

Equivalently, one can maximize the log-likelihood

$$\mathcal{L}(\boldsymbol{\theta}; \mathbf{X}) = \ln p(\mathbf{X} \mid \boldsymbol{\theta}) = \ln \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}) \; .$$

Remarks

- The EM algorithm is not limited to Mixtures of Gaussians but can also be applied to other probability density functions.
- The algorithm does not necessary yield global maxima. In practice, it is restarted with different initializations and the result with the highest log likelihood after convergence is chosen.
- One can think the EM algorithm as an alternating minimization procedure. Considering $G(\pmb{\theta},q)$ as the objective function, one iteration of the EM algorithm can be reformulated as

 $\begin{array}{ll} \text{E-step:} & q^{(t+1)} \in \operatorname*{argmax}_q G(\boldsymbol{\theta}^{(t)}, q) \\ \\ \text{M-step:} & \boldsymbol{\theta}^{(t+1)} \in \operatorname*{argmax}_{\boldsymbol{\theta}} G(\boldsymbol{\theta}, q^{(t)}) \end{array}$