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We are interested in a method to find the maximum likelihood estimator of a
parameter θ of a probability distribution ppx | θq.
Reminiscent of naming conventions:

ppθ | xq “ ppx | θqppθq
ppxq 9 ppx | θq ppθq .

Posterior probability Likelihood Prior probability

We are given finite amount of measurement (i.e. observed data) x1, x2, . . . , and
also know the probability distribution ppx | θq. The maximum likelihood estimate
of θ is given by

θ̂ P argmax
θ

ppx | θq .

A possible solution: Expectation Maximization Algorithm, which iteratively
makes guesses about the data x, and iteratively maximizes ppx | θq over θ.

Multivariate Gaussian distribution

Multivariate Gaussian GMM Expectation EM algorithm

Multivariate Gaussian distribution
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Assume a D-dimensional random vector X “ pX1, . . . , XDq, i.e. a vector whose
components are random variables, with the joint density function

ppx1, . . . , xDq “ 1a|2πΣ| exp
ˆ

´1

2
px ´ µqTΣ´1px ´ µq

˙
.

X is said to have multivariate Gaussian (or Normal) distribution with
parameters µ P RD and Σ P RDˆD assuming that Σ is positive definite.

Reminder: A symmetric A P Rnˆn matrix is said to be positive definite, if
uTAu ą 0 for all u P Rn.

µ is called the mean vector and Σ is called the covariance matrix. We often use
the notation X „ N px | µ,Σq denoting X has Normal distribution.

Note that the Gaussian distribution has many important analytical properties. For
example, it is “closed” under marginalization.

Maximum likelihood for the Gaussian
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Suppose we have a set of independent and identically distributed (i.i.d.) data
samples tx1, . . . ,xNu drawn from a Gaussian distribution. The data set can be

represented as an
“
x1 ¨ ¨ ¨ xN

‰T “ X P RNˆD matrix.

We are interested to estimate the parameters µ and Σ with the maximum
likelihood framework. The log-likelihood function is given by

ln ppX | µ,Σq “ ln
Nź

n“1

ppxn | µ,Σq

“
Nÿ

n“1

ln

#
1a|2πΣ| exp

ˆ
´1

2
pxn ´ µqTΣ´1pxn ´ µq

˙+

“
Nÿ

n“1

"
´1

2
ln

`p2πqD|Σ|˘ ´ 1

2
pxn ´ µqTΣ´1pxn ´ µq

*

Maximum likelihood for the Gaussian (cont.)
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ln ppX | µ,Σq “
Nÿ

n“1

"
´1

2
ln

`p2πqD|Σ|˘ ´ 1

2
pxn ´ µqTΣ´1pxn ´ µq

*

“
Nÿ

n“1

"
´D

2
lnp2πq ´ 1

2
lnp|Σ|q ´ 1

2
pxn ´ µqTΣ´1pxn ´ µq

*

“´ND

2
lnp2πq ´ N

2
lnp|Σ|q ´ 1

2

Nÿ

n“1

pxn ´ µqTΣ´1pxn ´ µq .

Maximum likelihood for µ ˚
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ln ppX | µ,Σq “ ´ND

2
lnp2πq ´ N

2
lnp|Σ|q ´ 1

2

Nÿ

n“1

pxn ´ µqTΣ´1pxn ´ µq .

Setting the derivative of the log-likelihood function w.r.t. µ to 0, we obtain

B
Bµ ln ppX | µ,Σq “´1

2

Nÿ

n“1

B
Bµ

`
xT
nΣ

´1xn ´ xT
nΣ

´1µ ´ µTΣ´1xn ´ µTΣ´1µ
˘

“ ´ 1

2

Nÿ

n“1

`´xT
nΣ

´1 ´ xT
nΣ

´1 ´ 2Σ´1µ
˘

“
Nÿ

n“1

Σ´1pxn ´ µq “ 0 ñ µ “ 1

N

Nÿ

n“1

xn .

The maximum likelihood estimator for µ is simply given by the center of the mass
of the data, i.e. the sample mean.



Maximum likelihood for Σ ˚
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ln ppX | µ,Σq “ ´ND

2
lnp2πq ´ N

2
lnp|Σ|q ´ 1

2

Nÿ

n“1

pxn ´ µqTΣ´1pxn ´ µq .

Setting the derivative of the log-likelihood function w.r.t. Σ to 0, we obtain

B
BΣ ln ppX | µ,Σq “ ´ N

2

B
BΣ lnp|Σ|q ´ 1

2

Nÿ

n“1

B
BΣ

`pxn ´ µqTΣ´1pxn ´ µq˘

“ ´ N

2

1

|Σ| |Σ|Σ´1 ´ 1

2

Nÿ

n“1

´Σ´T pxn ´ µqpxn ´ µqTΣ´T

“ ´ N

2
Σ´1 ` 1

2

Nÿ

n“1

Σ´1pxn ´ µqpxn ´ µqTΣ´1

Maximum likelihood for Σ (cont.) ˚
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B
BΣ ln ppX | µ,Σq “ ´ N

2
Σ´1 ` 1

2

Nÿ

n“1

Σ´1pxn ´ µqpxn ´ µqTΣ´1 “ 0

ñ Σ “ 1

N

Nÿ

n“1

pxn ´ µqpxn ´ µqT .

This is, by definition, called the sample covariance matrix of the data.

The geometry of the Multivariate Gaussian
distribution
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Let us consider the following form

∆ “
b

px ´ µqTΣ´1px ´ µq ,
which is called the Mahalanobis-distance from µ to x. In case of Σ “ I we get
the Euclidean-distance. Note that the quantity ∆2 appears in the exponent in the
density function.

The covariance matrix Σ is a real, symmetric
matrix, hence its

■ eigenvalues λ1, . . . , λD are real,
■ eigenvectors u1, . . . ,uD P RD from an

orthonormal set.

Therefore Σ´1 can be written as
x1

x2

λ
1/2
1

λ
1/2
2

y1

y2

u1

u2

µ

2D Gaussian

Σ´1 “
Dÿ

i“1

1

λi
uiu

T
i , which yields ∆2 “

Dÿ

i“1

y2i
λi

, where yi “ uT
i px ´ µq .

Two dimensional Gaussian distribution ˚
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The density function of the two dimensional Gaussian distribution is given by

ppx1, x2q “ 1

2π
a|Σ| exp

ˆ
´1

2

“
x1 ´ µ1 x2 ´ µ2

‰
Σ´1

„
x1 ´ µ1

x2 ´ µ2

˙
,

where µ “
„
µ1

µ2


and Σ “

„
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2


for σ1, σ2 ą 0 and ´1 ă ρ ă 1.

Note that this density function can be written equivalently as

ppx1, x2q “ 1

2πσ1σ2
a
1 ´ ρ2

e
´ 1

2p1´ρ2q

ˆ
px1´m1q2

σ2
1

´2ρ
px1´m1qpx2´m2q

σ1σ2
` px2´m2q2

σ2
2

˙

.

Example: 2D Gaussian and its marginals ˚
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Assume X „ N px | µ,Σq, where µ “
„
1
2


and Σ “

„
0.5 0.25
0.25 1


that is ρ “ 0.5.

The density function is given by

ppx1, x2q “ 1

π
?
0.75

exp

ˆ
´8px1 ´ 1q2

3
` 4px1 ´ 1qpx2 ´ 2q

3
´ 2px2 ´ 2q2

3

˙
,

0

2
0

2

4

0

0.2

0.4

x1 x2

and the marginal distributions are
defined by

pX1px1q “ 1

0.5
?
2π

exp

ˆ
´px1 ´ 1q2

0.5

˙
,

pX2px2q “ 1?
2π

exp

ˆ
´px2 ´ 2q2

2

˙
.

Mixtures of Gaussians
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While the Gaussian distribution has some important analytical properties, it suffers
from limitations when it comes to modelling real data sets. However the linear
combination of Gaussians can give rise to very complex densities.
Let us consider a superposition of K Gaussian
densities

ppxq “
Kÿ

k“1

πk N px | µk,Σkq

is called a mixture of Gaussians.
The parameters πk are called mixing coefficients.

x

p(x)

Mixture of three Gaussians

1 “
ż

RD

ppxqdx “
ż

RD

Kÿ

k“1

πk N px | µk,Σkqdx “
Kÿ

k“1

πk .

All the density functions are non-negative, hence πk ě 0, therefore

0 ď πk ď 1 for all k “ 1, . . . ,K .

Mixtures of Gaussians (cont.)
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We are provided with the joint distribution

ppxq “
Kÿ

k“1

ppk,xq “
Kÿ

k“1

ppkqppx | kq “
Kÿ

k“1

πk N px | µk,Σkq .

One can view

■ πk “ ppkq as the prior probability of picking the kth component;
■ N px | µk,Σkq “ ppx | kq as the probability of x conditioned on k.

The posterior probabilities ppk | xq, a.k.a. responsibilities, are denoted by γkpxq
and show the probability that a given sample x belongs to the kth component.

γkpxq ∆“ ppk | xq “ ppx | kqppkq
ppxq “ ppx | kqppkqřK

l“1 ppl,xq “ ppkqppx | kqřK
l“1 pplqppx | lq

“ πk N px | µk,ΣkqřK
l“1 πl N px | µl,Σlq

.



Example: Mixture of three 2D Gaussians
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.

Example: Mixture of three 2D Gaussians
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Maximum likelihood for mixture of Gaussians

Multivariate Gaussian GMM Expectation EM algorithm

IN2245 - Combinatorial Optimization in Computer Vision 5. The Expectation Maximization Algorithm – 19 / 39

Suppose we have a set of i.i.d. data samples tx1, . . . ,xNu drawn from a mixture
of Gaussians. The data set is represented by X P RNˆD.

The goal is to find the parameter vector θ “ pπ,µ,Σq, specifying the model from
which the samples xn have most likely been drawn. We may find the parameters
which maximize the likelihood function

θ̂ P argmax
θ

ppX | θq“argmax
θ

Nź

n“1

ppxn | θq“argmax
θ

Nź

n“1

Kÿ

k“1

πkN pxn | µk,Σkq .

To simplify the optimization we use the log-likelihood function Lpθq

θ̂ P argmax
θ

Lpθq “ argmax
θ

Nÿ

n“1

ln

#
Kÿ

k“1

πk N pxn | µk,Σkq
+

.

Note that there is no closed-form solution for this model ñ iterative solution.

Maximum likelihood for µ ˚
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θ̂ P argmax
θ

Nÿ

n“1

ln

#
Kÿ

k“1

πk N pxn | µk,Σkq
+

s.t. πk ě 0,
Kÿ

k“1

πk “ 1 .

We calculate the derivative of Lpθq w.r.t. µk

B
Bµk

Lpθq “
Nÿ

n“1

1řK
l“1 πlN pxn | µl,Σlq

B
Bµk

Kÿ

k“1

πkN pxn | µk,Σkq

“
Nÿ

n“1

πkřK
l“1 πlN pxn | µl,Σlq

B
Bµk

N pxn | µk,Σkq

Maximum likelihood for µ (cont.) ˚
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Let us now consider the derivative of a Gaussian only

B
Bµk

N pxn | µk,Σkq “ 1a|2πΣk|
B

Bµk

exp
´

´ 1

2
pxn ´ µkqTΣ´1

k pxn ´ µkq
¯

“ 1a|2πΣk| exp
´´1

2
pxn ´ µkqTΣ´1

k pxn ´ µkq
¯
Σ´1

k pxn ´ µkq

“N pxn | µk,ΣkqΣ´1
k pxn ´ µkq .

By substituting back we get

B
Bµk

Lpθq “
Nÿ

n“1

πkN pxn | µk,ΣkqřK
l“1 πl N pxn | µl,Σlq

looooooooooooooooooomooooooooooooooooooon
γnk

∆“γkpxnq

Σ´1
k pxn ´ µkq .

Maximum likelihood for µ (cont.) ˚
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Setting the derivative of Lpθq w.r.t. µk to 0, we obtain

B
Bµk

Lpθq “
Nÿ

n“1

γnkΣ
´1
k pxn ´ µkq “0

Nÿ

n“1

γnkpxn ´ µkq “0 ñ µk “
řN

n“1 γnk xnřN
n“1 γnk

.

Maximum likelihood for Σ ˚
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θ̂ P argmax
θ

Nÿ

n“1

ln

#
Kÿ

k“1

πk N pxn | µk,Σkq
+

s.t. πk ě 0,
Kÿ

k“1

πk “ 1 .

We calculate the derivative of Lpθq w.r.t. Σk

B
BΣk

Lpθq “
Nÿ

n“1

πkřK
l“1 πlN pxn | µl,Σlq

B
BΣk

N pxn | µk,Σkq

Let us now consider the derivative of a Gaussian only

B
BΣk

N pxn | µk,Σkq “ B
BΣk

1a|2πΣk| exp
´

´ 1

2
pxn ´ µkqTΣ´1

k pxn ´ µkq
¯
.

Maximum likelihood for Σ (cont.) ˚
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We calculate the following derivatives:

B
BΣk

1a|2πΣk| “ 1

p2πqD
2

B
BΣk

|Σk|´ 1
2 “ 1

p2πqD
2

´1

2
|Σk|´ 3

2 |Σk|Σ´1
k “ ´Σ´1

k

2
a|2πΣk| .

B
BΣk

exp
´

´ 1

2
pxn ´ µkqTΣ´1

k pxn ´ µkq
¯

“ exp
´

´ 1

2
pxn ´ µkqTΣ´1

k pxn ´ µkq
¯ B

BΣk

´
´ 1

2
pxn ´ µkqTΣ´1

k pxn ´ µkq
¯

“ exp
´

´ 1

2
pxn ´ µkqTΣ´1

k pxn ´ µkq
¯´1

2
p´Σ´T

k qpxn ´ µkqpxn ´ µqTΣ´T
k

“ 1

2
exp

´
´ 1

2
pxn ´ µkqTΣ´1

k pxn ´ µkq
¯
Σ´1

k pxn ´ µkqpxn ´ µkqTΣ´1
k .



Maximum likelihood for Σ (cont.) ˚
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Now we are at the position to calculate the derivative of a Gaussian w.r.t. Σ

B
BΣk

N pxn | µk,Σkq

“ B
BΣk

˜
1a|2πΣk| exp

´
´ 1

2
pxn ´ µkqTΣ´1

k pxn ´ µkq
¯¸

“ ´Σ´1
k

2
a|2πΣk| exp

´
´ 1

2
pxn ´ µkqTΣ´1

k pxn ´ µkq
¯

` 1

2

1a|2πΣk| exp
´

´ 1

2
pxn ´ µkqTΣ´1

k pxn ´ µkq
¯
Σ´1

k pxn ´ µkqpxn ´ µkqTΣ´1
k

“ ´ 1

2
Σ´1

k N pxn | µk,Σkq ` 1

2
N pxn | µk,ΣkqΣ´1

k pxn ´ µkqpxn ´ µkqTΣ´1
k .

Maximum likelihood for Σ (cont.) ˚

Multivariate Gaussian GMM Expectation EM algorithm

IN2245 - Combinatorial Optimization in Computer Vision 5. The Expectation Maximization Algorithm – 26 / 39

Setting the derivative of Lpθq w.r.t. Σk to 0, we obtain

B
BΣk

Lpθq “
Nÿ

n“1

πkřK
l“1 πlN pxn | µl,Σlq

B
BΣk

N pxn | µk,Σkq

“ ´ 1

2

Nÿ

n“1

Σ´1
k πkN pxn | µk,Σkq

řK
l“1 πlN pxn | µl,Σlq

` 1

2

Nÿ

n“1

πkN pxn | µk,ΣkqΣ´1
k pxn ´ µkqpxn ´ µkqTΣ´1

křK
l“1 πlN pxn | µl,Σlq

“´Σ´1
k

2

Nÿ

n“1

γnk ` Σ´1
k

2

Nÿ

n“1

γnkpxn ´ µkqpxn ´ µkqTΣ´1
k “ 0

ñ Σk “
řN

n“1 γnkpxn ´ µkqpxn ´ µkqT
řN

n“1 γnk
.

Maximum likelihood for π ˚
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To integrate the conditions on π we use the Lagrange multiplier method

θ̂ P argmax
θ

Nÿ

n“1

ln
Kÿ

k“1

πk N pxn | µk,Σkq ` λp1 ´
Kÿ

k“1

πkq .

Setting the derivative w.r.t. πk to 0, we obtain

Nÿ

n“1

N pxn | µk,ΣkqřK
l“1 πlN pxn | µl,Σlq

´ λ “0

Nÿ

n“1

řK
l“1 πlN pxn | µk,Σkq

řK
l“1 πlN pxn | µl,Σlq

“λ
Kÿ

l“1

πl ñ N “ λ

Nÿ

n“1

πkN pxn | µk,Σkq
řK

l“1 πlN pxn | µl,Σlqlooooooooooooomooooooooooooon
γnk

´πkN “ 0 ñ πk “
řN

n“1 γnk
N

.

The EM Algorithm for mixtures of Gaussians
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1: Initialize the means µk, covariances Σk and mixing coefficients πk
2: repeat
3: E step. Evaluate the responsibilities using the current parameter values

γnk “ πk N pxn | µk,ΣkqřK
l“1 πl N pxn | µl,Σlq

4: M step. Re-estimate the parameters using the current responsibilities

µnew
k “

řN
n“1 γnkxnřN
n“1 γnk

, Σnew
k “

řN
n“1 γnkpxn ´ µnew

k qpxn ´ µnew
k qT

řN
n“1 γnk

πnew
k “

řN
n“1 γnk
N

5: until convergence of either the parameters θ or the log likelihood Lpθq

Example

Multivariate Gaussian GMM Expectation EM algorithm
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(a)−2 0 2

−2

0

2

(b)−2 0 2

−2

0

2

(c)

L = 1

−2 0 2

−2

0

2

(d)

L = 2

−2 0 2

−2

0

2

(e)

L = 5

−2 0 2

−2

0

2

(f)

L = 20

−2 0 2

−2

0

2

Expectation

Multivariate Gaussian GMM Expectation EM algorithm
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The expectation of a random variable is intuitively the long-run average value of
repetitions of the experiment it represents.

Let X be a discrete random variable taking values x1, x2, . . . with probabilities
p1, p2, . . . , respectively. The expectation (or expected value) of X is defined as

ErXs “
8ÿ

i“1

xipi ,

assuming that this series is absolute convergent (that is
ř8

i“1 |xi|pi is convergent).
Example: throwing two “fair” dice and the value of X is is the sum the numbers
showing on the dice.

ErXs “2
1

36
` 3

2

36
` 4

3

36
` 5

4

36
` 6

5

36

` 7
6

36
` 8

5

36
` 9

4

36
` 10

3

36
` 11

2

36
` 12

1

36
“ 7 .

Expectation (cont.)
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Let X be a (continuous) random variable with density function fpxq. The
expectation of X is defined as

EpXq “
ż 8

´8
x ¨ fpxqdx ,

assuming that this integral is absolutely convergent (that is the value of the
integral

ş8
´8 |x ¨ fpxq|dx “ ş8

´8 |x| ¨ fpxqdx is finite).

Suppose a random variable X with density function fpxq. The expected value of
a function gpxq : R Ñ R is defined as

ErgpXqs “
ż 8

´8
gpxq ¨ fpxqdx ,

assuming that this integral is absolutely convergent.



Conditional expectation
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Let pX,Y q be a discrete random vector. The conditional expectation of X given
the event tY “ yu is defined as

ErX | Y “ ys “
8ÿ

i“1

xiP pX “ xi | Y “ yq ,

assuming that this series is absolutely convergent.

Let pX,Y q be a (continuous) random vector with joint density function fXY px, yq.
The conditional expectation of X given the event tY “ yu is defined as

ErX | Y “ ys “
ż 8

´8
x ¨ fX|Y px | Y “ yqdx ,

assuming that this integral is absolutely convergent.

Conditional expectation (cont.)
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Suppose a (continuous) random vector pX,Y q with joint density function
fXY px, yq. The conditional expectation of a function gpxq : R Ñ R given the
event tY “ yu is defined as

ErgpXq | Y “ ys “
ż 8

´8
gpxq ¨ fX|Y px | Y “ yqdx ,

assuming that this integral is absolutely convergent.

The Expectation Maximization
algorithm

Multivariate Gaussian GMM Expectation EM algorithm

Latent variables
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Suppose we are given a set of i.i.d. data samples tx1, . . . ,xNu represented by the
matrix X P RNˆD. The samples are drawn from a model (e.g., mixture of
Gaussians) given by its parameters θ.
There are two main applications of the EM algorithm:

1. The data has missing values, due to limitations of the observation process.
2. The likelihood function can be simplified by assuming missing values.

Latent variables gathering the missing values are represented by a matrix Z.

We generally want to maximize the posterior probability

θ̂ P argmax
θ

ppθ | Xq “ argmax
θ

ÿ

Z

ppθ,Z | Xq .

Equivalently, one can maximize the log-likelihood

Lpθ;Xq “ ln ppX | θq “ ln
ÿ

Z

ppX,Z | θq .

The EM algorithm
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1: Choose an initial setting for the parameters θp0q
2: t Ñ 0
3: repeat
4: t Ñ t ` 1
5: E step. Evaluate qpt´1qpZq ∆“ ppZ | X, θpt´1qq
6: M step. Evaluate θptq given by

θptq “ argmax
θ

Qpθ, θpt´1qq

where

Qpθ, θpt´1qq “
ÿ

Z

ppZ | X, θpt´1qq ln ppX,Z | θq

7: until convergence of either the parameters θ or the log likelihood Lpθ;Xq

Remarks
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■ The EM algorithm is not limited to Mixtures of Gaussians but can also be
applied to other probability density functions.

■ The algorithm does not necessary yield global maxima. In practice, it is
restarted with different initializations and the result with the highest log
likelihood after convergence is chosen.

■ One can think the EM algorithm as an alternating minimization procedure.
Considering Gpθ, qq as the objective function, one iteration of the EM
algorithm can be reformulated as

E-step: qpt`1q P argmax
q

Gpθptq, qq

M-step: θpt`1q P argmax
θ

Gpθ, qptqq
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