Combinatorial Optimization in Computer Vision (IN2245)

Frank R. Schmidt Csaba Domokos

Winter Semester 2015/2016

5. The Expectation Maximization Algorithm	2
5. The Expectation Maximization Algorithm	3
Multivariate Gaussian	4
Multivariate Gaussian distribution	4
Multivariate Gaussian distribution	[
Maximum likelihood for the Gaussian	6
Maximum likelihood for the Gaussian (cont.)	7
Maximum likelihood for μ	8
Maximum likelihood for Σ	🤅
Maximum likelihood for Σ	10
The geometry of the Multivariate Gaussian distribution	11
Two dimensional Gaussian distribution	12
Example: 2D Gaussian and its marginals	
GMM	14
Mixtures of Gaussians	14
Mixtures of Gaussians	15

	Mixtures of Gaussians (cont.)	16
	Example: Mixture of three 2D Gaussians	17
	Example: Mixture of three 2D Gaussians	18
	Maximum likelihood for mixture of Gaussians	19
	Maximum likelihood for μ	20
	Maximum likelihood for μ (cont.)	21
	Maximum likelihood for μ (cont.)	22
	Maximum likelihood for Σ	23
	Maximum likelihood for Σ (cont.)	24
	Maximum likelihood for Σ (cont.)	25
	Maximum likelihood for Σ (cont.)	26
	Maximum likelihood for π	27
	The EM Algorithm for mixtures of Gaussians	28
	Example	29
Exp	pectation	30
	Expectation	31
-	Expectation (cont.)	32
(Conditional expectation	33
(Conditional expectation (cont.)	34
EΜ	algorithm	35
-	The Expectation Maximization algorithm	35
	Latent variables	
	The EM algorithm	
	Remarks	
	iterature	30

5. The Expectation Maximization Algorithm

2 / 39

Introduction

We are interested in a method to find the *maximum likelihood estimator* of a **parameter** θ of a **probability distribution** $p(x \mid \theta)$. Reminiscent of naming conventions:

$$p(\theta \mid x) \ = \frac{p(x \mid \theta)p(\theta)}{p(x)} \propto \ p(x \mid \theta) \ p(\theta) \ .$$
 Posterior probability Likelihood Prior probability

We are given finite amount of **measurement** (i.e. observed data) x_1, x_2, \ldots , and also know the probability distribution $p(x \mid \theta)$. The maximum likelihood estimate of θ is given by

$$\hat{\theta} \in \operatorname*{argmax}_{\theta} p(x \mid \theta)$$
.

A possible solution: Expectation Maximization Algorithm, which iteratively makes guesses about the data x, and iteratively maximizes $p(x \mid \theta)$ over θ .

IN2245 - Combinatorial Optimization in Computer Vision

5. The Expectation Maximization Algorithm – 3 / 39

Multivariate Gaussian 4 / 39

Multivariate Gaussian distribution

4 / 39

Multivariate Gaussian distribution

Assume a D-dimensional random vector $\mathbf{X} = (X_1, \dots, X_D)$, i.e. a vector whose components are random variables, with the joint density function

$$p(x_1,\ldots,x_D) = \frac{1}{\sqrt{|2\pi\Sigma|}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right).$$

X is said to have multivariate Gaussian (or Normal) distribution with parameters $\mu \in \mathbb{R}^D$ and $\Sigma \in \mathbb{R}^{D \times D}$ assuming that Σ is positive definite.

Reminder. A symmetric $\mathbf{A} \in \mathbb{R}^{n \times n}$ matrix is said to be **positive definite**, if $\mathbf{u}^T \mathbf{A} \mathbf{u} > 0$ for all $\mathbf{u} \in \mathbb{R}^n$.

 μ is called the **mean vector** and Σ is called the **covariance matrix**. We often use the notation $X \sim \mathcal{N}(\mathbf{x} \mid \mu, \Sigma)$ denoting X has Normal distribution.

Note that the Gaussian distribution has many important analytical properties. For example, it is "closed" under marginalization.

IN2245 - Combinatorial Optimization in Computer Vision

5. The Expectation Maximization Algorithm - 5 / 39

Maximum likelihood for the Gaussian

Suppose we have a set of **independent and identically distributed** (*i.i.d.*) data samples $\{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ drawn from a Gaussian distribution. The data set can be represented as an $\begin{bmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_N \end{bmatrix}^T = \mathbf{X} \in \mathbb{R}^{N \times D}$ matrix.

We are interested to estimate the parameters μ and Σ with the maximum likelihood framework. The log-likelihood function is given by

$$\ln p(\mathbf{X} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \ln \prod_{n=1}^{N} p(\mathbf{x}_n \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$= \sum_{n=1}^{N} \ln \left\{ \frac{1}{\sqrt{|2\pi\boldsymbol{\Sigma}|}} \exp\left(-\frac{1}{2}(\mathbf{x}_n - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}_n - \boldsymbol{\mu})\right) \right\}$$

$$= \sum_{n=1}^{N} \left\{ -\frac{1}{2} \ln \left((2\pi)^D |\boldsymbol{\Sigma}| \right) - \frac{1}{2} (\mathbf{x}_n - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}_n - \boldsymbol{\mu}) \right\}$$

IN2245 - Combinatorial Optimization in Computer Vision

5. The Expectation Maximization Algorithm – 6 / 39

Maximum likelihood for the Gaussian (cont.)

$$\ln p(\mathbf{X} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \left\{ -\frac{1}{2} \ln \left((2\pi)^{D} |\boldsymbol{\Sigma}| \right) - \frac{1}{2} (\mathbf{x}_{n} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{n} - \boldsymbol{\mu}) \right\}$$

$$= \sum_{n=1}^{N} \left\{ -\frac{D}{2} \ln(2\pi) - \frac{1}{2} \ln(|\boldsymbol{\Sigma}|) - \frac{1}{2} (\mathbf{x}_{n} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{n} - \boldsymbol{\mu}) \right\}$$

$$= \left[-\frac{ND}{2} \ln(2\pi) - \frac{N}{2} \ln(|\boldsymbol{\Sigma}|) - \frac{1}{2} \sum_{n=1}^{N} (\mathbf{x}_{n} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{n} - \boldsymbol{\mu}) \right].$$

IN2245 - Combinatorial Optimization in Computer Vision

5. The Expectation Maximization Algorithm - 7 / 39

Maximum likelihood for μ

$$\ln p(\mathbf{X} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = -\frac{ND}{2} \ln(2\pi) - \frac{N}{2} \ln(|\boldsymbol{\Sigma}|) - \frac{1}{2} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x}_n - \boldsymbol{\mu}).$$

Setting the derivative of the log-likelihood function w.r.t. μ to 0, we obtain

$$\frac{\partial}{\partial \boldsymbol{\mu}} \ln p(\mathbf{X} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{-1}{2} \sum_{n=1}^{N} \frac{\partial}{\partial \boldsymbol{\mu}} \left(\mathbf{x}_{n}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{n} - \mathbf{x}_{n}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} - \boldsymbol{\mu}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{n} - \boldsymbol{\mu}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} \right)$$

$$= -\frac{1}{2} \sum_{n=1}^{N} \left(-\boldsymbol{\Sigma}^{-1} \mathbf{x}_{n} - \boldsymbol{\Sigma}^{-1} \mathbf{x}_{n} - 2\boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} \right)$$

$$= \sum_{n=1}^{N} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{n} - \boldsymbol{\mu}) = 0 \quad \Rightarrow \quad \boldsymbol{\mu} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n}.$$

The maximum likelihood estimator for μ is simply given by the center of the mass of the data, i.e. the sample mean.

IN2245 - Combinatorial Optimization in Computer Vision

5. The Expectation Maximization Algorithm – 8 / 39

Maximum likelihood for Σ

$$\ln p(\mathbf{X} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = -\frac{ND}{2} \ln(2\pi) - \frac{N}{2} \ln(|\boldsymbol{\Sigma}|) - \frac{1}{2} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x}_n - \boldsymbol{\mu}).$$

Setting the derivative of the log-likelihood function w.r.t. Σ to 0, we obtain

$$\frac{\partial}{\partial \mathbf{\Sigma}} \ln p(\mathbf{X} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = -\frac{N}{2} \frac{\partial}{\partial \mathbf{\Sigma}} \ln(|\boldsymbol{\Sigma}|) - \frac{1}{2} \sum_{n=1}^{N} \frac{\partial}{\partial \mathbf{\Sigma}} \left((\mathbf{x}_{n} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{n} - \boldsymbol{\mu}) \right)$$

$$= -\frac{N}{2} \frac{1}{|\boldsymbol{\Sigma}|} |\boldsymbol{\Sigma}| \boldsymbol{\Sigma}^{-1} - \frac{1}{2} \sum_{n=1}^{N} -\boldsymbol{\Sigma}^{-T} (\mathbf{x}_{n} - \boldsymbol{\mu}) (\mathbf{x}_{n} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-T}$$

$$= -\frac{N}{2} \boldsymbol{\Sigma}^{-1} + \frac{1}{2} \sum_{n=1}^{N} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{n} - \boldsymbol{\mu}) (\mathbf{x}_{n} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}$$

IN2245 - Combinatorial Optimization in Computer Vision

5. The Expectation Maximization Algorithm – 9 / 39

Maximum likelihood for Σ (cont.)

$$\frac{\partial}{\partial \mathbf{\Sigma}} \ln p(\mathbf{X} \mid \boldsymbol{\mu}, \mathbf{\Sigma}) = -\frac{N}{2} \mathbf{\Sigma}^{-1} + \frac{1}{2} \sum_{n=1}^{N} \mathbf{\Sigma}^{-1} (\mathbf{x}_n - \boldsymbol{\mu}) (\mathbf{x}_n - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} = 0$$

$$\Rightarrow \mathbf{\Sigma} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu}) (\mathbf{x}_n - \boldsymbol{\mu})^T.$$

This is, by definition, called the sample covariance matrix of the data.

IN2245 - Combinatorial Optimization in Computer Vision

5. The Expectation Maximization Algorithm – 10 / 39

The geometry of the Multivariate Gaussian distribution

Let us consider the following form

$$\Delta = \sqrt{(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})} ,$$

which is called the Mahalanobis-distance from μ to \mathbf{x} . In case of $\Sigma = I$ we get the Euclidean-distance. Note that the quantity Δ^2 appears in the exponent in the density function.

The covariance matrix Σ is a real, symmetric matrix, hence its

- \blacksquare eigenvalues $\lambda_1, \dots, \lambda_D$ are real,
- \blacksquare eigenvectors $\mathbf{u}_1,\dots,\mathbf{u}_D\in\mathbb{R}^D$ from an orthonormal set.

Therefore Σ^{-1} can be written as

2D Gaussian

$$\boldsymbol{\Sigma}^{-1} = \sum_{i=1}^D \frac{1}{\lambda_i} \mathbf{u}_i \mathbf{u}_i^T \;, \quad \text{which yields} \quad \boldsymbol{\Delta}^2 = \sum_{i=1}^D \frac{y_i^2}{\lambda_i} \;, \quad \text{where} \quad y_i = \mathbf{u}_i^T (\mathbf{x} - \boldsymbol{\mu}) \;.$$

Two dimensional Gaussian distribution

The density function of the two dimensional Gaussian distribution is given by

$$p(x_1, x_2) = \frac{1}{2\pi\sqrt{|\Sigma|}} \exp\left(-\frac{1}{2} \begin{bmatrix} x_1 - \mu_1 & x_2 - \mu_2 \end{bmatrix} \Sigma^{-1} \begin{bmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{bmatrix}\right) ,$$

where
$$\boldsymbol{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$$
 and $\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$ for $\sigma_1, \sigma_2 > 0$ and $-1 < \rho < 1$.

Note that this density function can be written equivalently as

$$p(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)} \left(\frac{(x_1-m_1)^2}{\sigma_1^2} - 2\rho\frac{(x_1-m_1)(x_2-m_2)}{\sigma_1\sigma_2} + \frac{(x_2-m_2)^2}{\sigma_2^2}\right)}$$

IN2245 - Combinatorial Optimization in Computer Vision

5. The Expectation Maximization Algorithm - 12 / 39

Example: 2D Gaussian and its marginals

Assume
$$\mathbf{X} \sim \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$$
, where $\boldsymbol{\mu} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\boldsymbol{\Sigma} = \begin{bmatrix} 0.5 & 0.25 \\ 0.25 & 1 \end{bmatrix}$ that is $\rho = 0.5$. The density function is given by

$$p(x_1, x_2) = \frac{1}{\pi \sqrt{0.75}} \exp\left(-\frac{8(x_1 - 1)^2}{3} + \frac{4(x_1 - 1)(x_2 - 2)}{3} - \frac{2(x_2 - 2)^2}{3}\right) ,$$

and the marginal distributions are defined by

$$p_{X_1}(x_1) = \frac{1}{0.5\sqrt{2\pi}} \exp\left(-\frac{(x_1 - 1)^2}{0.5}\right) ,$$
$$p_{X_2}(x_2) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x_2 - 2)^2}{2}\right) .$$

IN2245 - Combinatorial Optimization in Computer Vision

5. The Expectation Maximization Algorithm – 13 / 39

Mixtures of Gaussians

14 / 39

Mixtures of Gaussians

While the Gaussian distribution has some important analytical properties, it suffers from limitations when it comes to modelling real data sets. However the **linear combination of Gaussians** can give rise to very complex densities.

Let us consider a superposition of K Gaussian densities

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \; \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

is called a mixture of Gaussians.

The parameters π_k are called **mixing coefficients**.

$$1 = \int_{\mathbb{R}^D} p(\mathbf{x}) \mathsf{d}\mathbf{x} = \int_{\mathbb{R}^D} \sum_{k=1}^K \pi_k \; \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \mathsf{d}\mathbf{x} = \sum_{k=1}^K \pi_k \; .$$

All the density functions are non-negative, hence $\pi_k\geqslant 0$, therefore

$$0 \leqslant \pi_k \leqslant 1$$
 for all $k = 1, \dots, K$.

IN2245 - Combinatorial Optimization in Computer Vision

5. The Expectation Maximization Algorithm – 15 / 39

Mixtures of Gaussians (cont.)

We are provided with the joint distribution

$$p(\mathbf{x}) = \sum_{k=1}^{K} p(k, \mathbf{x}) = \sum_{k=1}^{K} p(k) p(\mathbf{x} \mid k) = \sum_{k=1}^{K} \pi_k \, \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) .$$

One can view

- \blacksquare $\pi_k = p(k)$ as the prior probability of picking the k^{th} component;
- $N(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = p(\mathbf{x} \mid k)$ as the probability of \mathbf{x} conditioned on k.

The posterior probabilities $p(k \mid \mathbf{x})$, a.k.a. **responsibilities**, are denoted by $\gamma_k(\mathbf{x})$ and show the probability that a given sample \mathbf{x} belongs to the k^{th} component.

$$\gamma_k(\mathbf{x}) \stackrel{\Delta}{=} p(k \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid k)p(k)}{p(\mathbf{x})} = \frac{p(\mathbf{x} \mid k)p(k)}{\sum_{l=1}^K p(l, \mathbf{x})} = \frac{p(k)p(\mathbf{x} \mid k)}{\sum_{l=1}^K p(l)p(\mathbf{x} \mid l)} = \frac{\pi_k \, \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{l=1}^K \pi_l \, \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_l, \boldsymbol{\Sigma}_l)} .$$

IN2245 - Combinatorial Optimization in Computer Vision

5. The Expectation Maximization Algorithm – 16 / 39

IN2245 - Combinatorial Optimization in Computer Vision

5. The Expectation Maximization Algorithm -17/39

IN2245 - Combinatorial Optimization in Computer Vision

5. The Expectation Maximization Algorithm – $18\ /\ 39$

Maximum likelihood for mixture of Gaussians

Suppose we have a set of *i.i.d.* data samples $\{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ drawn from a mixture of Gaussians. The data set is represented by $\mathbf{X} \in \mathbb{R}^{N \times D}$.

The goal is to find the parameter vector $\boldsymbol{\theta}=(\boldsymbol{\pi},\boldsymbol{\mu},\boldsymbol{\Sigma})$, specifying the model from which the samples \mathbf{x}_n have most likely been drawn. We may find the parameters which maximize the *likelihood function*

$$\hat{\boldsymbol{\theta}} \in \operatorname*{argmax}_{\boldsymbol{\theta}} p(\mathbf{X} \mid \boldsymbol{\theta}) = \operatorname*{argmax}_{\boldsymbol{\theta}} \prod_{n=1}^{N} p(\mathbf{x}_n \mid \boldsymbol{\theta}) = \operatorname*{argmax}_{\boldsymbol{\theta}} \prod_{n=1}^{N} \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$$

To simplify the optimization we use the **log-likelihood function** $\mathcal{L}(\theta)$

$$\hat{\boldsymbol{\theta}} \in \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \mathcal{L}(\boldsymbol{\theta}) = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_{k} \ \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right\} .$$

Note that there is no closed-form solution for this model \Rightarrow iterative solution.

IN2245 - Combinatorial Optimization in Computer Vision

5. The Expectation Maximization Algorithm – 19 / 39

Maximum likelihood for μ

$$\hat{\boldsymbol{\theta}} \in \operatorname*{argmax}_{\boldsymbol{\theta}} \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_{k} \; \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right\} \quad \text{s.t.} \quad \pi_{k} \geqslant 0, \sum_{k=1}^{K} \pi_{k} = 1 \; .$$

We calculate the derivative of $\mathcal{L}(\boldsymbol{\theta})$ w.r.t. $\boldsymbol{\mu}_k$

$$\frac{\partial}{\partial \boldsymbol{\mu}_{k}} \mathcal{L}(\boldsymbol{\theta}) = \sum_{n=1}^{N} \frac{1}{\sum_{l=1}^{K} \pi_{l} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{l}, \boldsymbol{\Sigma}_{l})} \frac{\partial}{\partial \boldsymbol{\mu}_{k}} \sum_{k=1}^{K} \pi_{k} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})$$

$$= \sum_{n=1}^{N} \frac{\pi_{k}}{\sum_{l=1}^{K} \pi_{l} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{l}, \boldsymbol{\Sigma}_{l})} \frac{\partial}{\partial \boldsymbol{\mu}_{k}} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})$$

IN2245 - Combinatorial Optimization in Computer Vision

5. The Expectation Maximization Algorithm - 20 / 39

Maximum likelihood for μ (cont.)

Let us now consider the derivative of a Gaussian only

$$\frac{\partial}{\partial \boldsymbol{\mu}_{k}} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) = \frac{1}{\sqrt{|2\pi\boldsymbol{\Sigma}_{k}|}} \frac{\partial}{\partial \boldsymbol{\mu}_{k}} \exp\left(-\frac{1}{2}(\mathbf{x}_{n} - \boldsymbol{\mu}_{k})^{T} \boldsymbol{\Sigma}_{k}^{-1} (\mathbf{x}_{n} - \boldsymbol{\mu}_{k})\right)
= \frac{1}{\sqrt{|2\pi\boldsymbol{\Sigma}_{k}|}} \exp\left(\frac{-1}{2}(\mathbf{x}_{n} - \boldsymbol{\mu}_{k})^{T} \boldsymbol{\Sigma}_{k}^{-1} (\mathbf{x}_{n} - \boldsymbol{\mu}_{k})\right) \boldsymbol{\Sigma}_{k}^{-1} (\mathbf{x}_{n} - \boldsymbol{\mu}_{k})
= \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \boldsymbol{\Sigma}_{k}^{-1} (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}).$$

By substituting back we get

$$\frac{\partial}{\partial \boldsymbol{\mu}_{k}} \mathcal{L}(\boldsymbol{\theta}) = \sum_{n=1}^{N} \underbrace{\left[\frac{\pi_{k} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})}{\sum_{l=1}^{K} \pi_{l} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{l}, \boldsymbol{\Sigma}_{l})} \right]}_{\gamma_{nk} \stackrel{\Delta}{=} \gamma_{k}(\mathbf{x}_{n})} \boldsymbol{\Sigma}_{k}^{-1}(\mathbf{x}_{n} - \boldsymbol{\mu}_{k}) .$$

IN2245 - Combinatorial Optimization in Computer Vision

5. The Expectation Maximization Algorithm - 21 / 39

Maximum likelihood for μ (cont.)

Setting the derivative of $\mathcal{L}(\boldsymbol{\theta})$ w.r.t. $\boldsymbol{\mu}_k$ to 0, we obtain

$$\frac{\partial}{\partial \boldsymbol{\mu}_k} \mathcal{L}(\boldsymbol{\theta}) = \sum_{n=1}^N \gamma_{nk} \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_k) = 0$$

$$\sum_{n=1}^N \gamma_{nk} (\mathbf{x}_n - \boldsymbol{\mu}_k) = 0 \quad \Rightarrow \quad \boldsymbol{\mu}_k = \frac{\sum_{n=1}^N \gamma_{nk} \, \mathbf{x}_n}{\sum_{n=1}^N \gamma_{nk}}$$

IN2245 - Combinatorial Optimization in Computer Vision

5. The Expectation Maximization Algorithm - 22 / 39

Maximum likelihood for Σ

$$\hat{\boldsymbol{\theta}} \in \operatorname*{argmax}_{\boldsymbol{\theta}} \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_{k} \; \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right\} \quad \text{s.t.} \quad \pi_{k} \geqslant 0, \sum_{k=1}^{K} \pi_{k} = 1 \; .$$

We calculate the derivative of $\mathcal{L}(\boldsymbol{\theta})$ w.r.t. $\boldsymbol{\Sigma}_k$

$$\frac{\partial}{\partial \mathbf{\Sigma}_k} \mathcal{L}(\boldsymbol{\theta}) = \sum_{n=1}^{N} \frac{\pi_k}{\sum_{l=1}^{K} \pi_l \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_l, \boldsymbol{\Sigma}_l)} \frac{\partial}{\partial \mathbf{\Sigma}_k} \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Let us now consider the derivative of a Gaussian only

$$\frac{\partial}{\partial \Sigma_k} \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \frac{\partial}{\partial \Sigma_k} \frac{1}{\sqrt{|2\pi \Sigma_k|}} \exp\left(-\frac{1}{2} (\mathbf{x}_n - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_k)\right).$$

IN2245 - Combinatorial Optimization in Computer Vision

5. The Expectation Maximization Algorithm - 23 / 39

Maximum likelihood for Σ (cont.)

We calculate the following derivatives:

$$\frac{\partial}{\partial \boldsymbol{\Sigma}_k} \frac{1}{\sqrt{|2\pi\boldsymbol{\Sigma}_k|}} = \frac{1}{(2\pi)^{\frac{D}{2}}} \frac{\partial}{\partial \boldsymbol{\Sigma}_k} |\boldsymbol{\Sigma}_k|^{-\frac{1}{2}} = \frac{1}{(2\pi)^{\frac{D}{2}}} \frac{-1}{2} |\boldsymbol{\Sigma}_k|^{-\frac{3}{2}} |\boldsymbol{\Sigma}_k| \boldsymbol{\Sigma}_k^{-1} = \frac{-\boldsymbol{\Sigma}_k^{-1}}{2\sqrt{|2\pi\boldsymbol{\Sigma}_k|}}.$$

$$\frac{\partial}{\partial \Sigma_k} \exp\left(-\frac{1}{2}(\mathbf{x}_n - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_k)\right)
= \exp\left(-\frac{1}{2}(\mathbf{x}_n - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_k)\right) \frac{\partial}{\partial \Sigma_k} \left(-\frac{1}{2}(\mathbf{x}_n - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_k)\right)
= \exp\left(-\frac{1}{2}(\mathbf{x}_n - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_k)\right) \frac{-1}{2} (-\boldsymbol{\Sigma}_k^{-T}) (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-T}
= \frac{1}{2} \exp\left(-\frac{1}{2}(\mathbf{x}_n - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_k)\right) \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} .$$

5. The Expectation Maximization Algorithm – 24 / 39

Maximum likelihood for Σ (cont.)

Now we are at the position to calculate the derivative of a Gaussian w.r.t. Σ

$$\begin{split} &\frac{\partial}{\partial \boldsymbol{\Sigma}_{k}} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \\ &= \frac{\partial}{\partial \boldsymbol{\Sigma}_{k}} \left(\frac{1}{\sqrt{|2\pi\boldsymbol{\Sigma}_{k}|}} \exp\left(-\frac{1}{2}(\mathbf{x}_{n} - \boldsymbol{\mu}_{k})^{T} \boldsymbol{\Sigma}_{k}^{-1}(\mathbf{x}_{n} - \boldsymbol{\mu}_{k})\right) \right) \\ &= \frac{-\boldsymbol{\Sigma}_{k}^{-1}}{2\sqrt{|2\pi\boldsymbol{\Sigma}_{k}|}} \exp\left(-\frac{1}{2}(\mathbf{x}_{n} - \boldsymbol{\mu}_{k})^{T} \boldsymbol{\Sigma}_{k}^{-1}(\mathbf{x}_{n} - \boldsymbol{\mu}_{k})\right) \\ &+ \frac{1}{2} \frac{1}{\sqrt{|2\pi\boldsymbol{\Sigma}_{k}|}} \exp\left(-\frac{1}{2}(\mathbf{x}_{n} - \boldsymbol{\mu}_{k})^{T} \boldsymbol{\Sigma}_{k}^{-1}(\mathbf{x}_{n} - \boldsymbol{\mu}_{k})\right) \boldsymbol{\Sigma}_{k}^{-1}(\mathbf{x}_{n} - \boldsymbol{\mu}_{k})(\mathbf{x}_{n} - \boldsymbol{\mu}_{k})^{T} \boldsymbol{\Sigma}_{k}^{-1} \\ &= -\frac{1}{2} \boldsymbol{\Sigma}_{k}^{-1} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) + \frac{1}{2} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \boldsymbol{\Sigma}_{k}^{-1}(\mathbf{x}_{n} - \boldsymbol{\mu}_{k})(\mathbf{x}_{n} - \boldsymbol{\mu}_{k})^{T} \boldsymbol{\Sigma}_{k}^{-1} . \end{split}$$

IN2245 - Combinatorial Optimization in Computer Vision

5. The Expectation Maximization Algorithm - 25 / 39

Maximum likelihood for Σ (cont.)

Setting the derivative of $\mathcal{L}(\boldsymbol{\theta})$ w.r.t. $\boldsymbol{\Sigma}_k$ to 0, we obtain

$$\frac{\partial}{\partial \Sigma_{k}} \mathcal{L}(\boldsymbol{\theta}) = \sum_{n=1}^{N} \frac{\pi_{k}}{\sum_{l=1}^{K} \pi_{l} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{l}, \boldsymbol{\Sigma}_{l})} \frac{\partial}{\partial \Sigma_{k}} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})$$

$$= -\frac{1}{2} \sum_{n=1}^{N} \frac{\boldsymbol{\Sigma}_{k}^{-1} \pi_{k} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})}{\sum_{l=1}^{K} \pi_{l} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{l}, \boldsymbol{\Sigma}_{l})}$$

$$+ \frac{1}{2} \sum_{n=1}^{N} \frac{\pi_{k} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \boldsymbol{\Sigma}_{k}^{-1}(\mathbf{x}_{n} - \boldsymbol{\mu}_{k}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k})^{T} \boldsymbol{\Sigma}_{k}^{-1}}{\sum_{l=1}^{K} \pi_{l} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{l}, \boldsymbol{\Sigma}_{l})}$$

$$= \frac{-\boldsymbol{\Sigma}_{k}^{-1}}{2} \sum_{n=1}^{N} \gamma_{nk} + \frac{\boldsymbol{\Sigma}_{k}^{-1}}{2} \sum_{n=1}^{N} \gamma_{nk} (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k})^{T} \boldsymbol{\Sigma}_{k}^{-1} = 0$$

$$\Rightarrow \sum_{k=1}^{N} \sum_{n=1}^{N} \gamma_{nk} (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k})^{T} \qquad .$$

IN2245 - Combinatorial Optimization in Computer Vision

5. The Expectation Maximization Algorithm – 26 / 39

Maximum likelihood for π

To integrate the conditions on π we use the Lagrange multiplier method

$$\hat{\boldsymbol{\theta}} \in \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \ln \sum_{k=1}^{K} \pi_{k} \, \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) + \lambda (1 - \sum_{k=1}^{K} \pi_{k}) .$$

Setting the derivative w.r.t. π_k to 0, we obtain

$$\sum_{n=1}^{N} \frac{\mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})}{\sum_{l=1}^{K} \pi_{l} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{l}, \boldsymbol{\Sigma}_{l})} - \lambda = 0$$

$$\sum_{n=1}^{N} \frac{\sum_{l=1}^{K} \pi_{l} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})}{\sum_{l=1}^{K} \pi_{l} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{l}, \boldsymbol{\Sigma}_{l})} = \lambda \sum_{l=1}^{K} \pi_{l} \quad \Rightarrow \quad N = \lambda$$

$$\sum_{n=1}^{N} \frac{\pi_{k} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})}{\sum_{l=1}^{K} \pi_{l} \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{l}, \boldsymbol{\Sigma}_{l})} - \pi_{k} N = 0 \quad \Rightarrow \quad \pi_{k} = \frac{\sum_{n=1}^{N} \gamma_{nk}}{N}$$

IN2245 - Combinatorial Optimization in Computer Vision

5. The Expectation Maximization Algorithm – 27 / 39

The EM Algorithm for mixtures of Gaussians

- 1: Initialize the means μ_k , covariances Σ_k and mixing coefficients π_k
- 2: repeat
- 3: **E step**. Evaluate the responsibilities using the current parameter values

$$\gamma_{nk} = \frac{\pi_k \, \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{l=1}^K \pi_l \, \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_l, \boldsymbol{\Sigma}_l)}$$

4: **M step**. Re-estimate the parameters using the current responsibilities

$$\boldsymbol{\mu}_k^{\text{new}} = \frac{\sum_{n=1}^N \gamma_{nk} \mathbf{x}_n}{\sum_{n=1}^N \gamma_{nk}} \;, \quad \boldsymbol{\Sigma}_k^{\text{new}} = \frac{\sum_{n=1}^N \gamma_{nk} (\mathbf{x}_n - \boldsymbol{\mu}_k^{\text{new}}) (\mathbf{x}_n - \boldsymbol{\mu}_k^{\text{new}})^T}{\sum_{n=1}^N \gamma_{nk}}$$

$$\boldsymbol{\pi}_k^{\text{new}} = \frac{\sum_{n=1}^N \gamma_{nk}}{N}$$

5: **until** convergence of either the parameters $m{ heta}$ or the log likelihood $\mathcal{L}(m{ heta})$

IN2245 - Combinatorial Optimization in Computer Vision

5. The Expectation Maximization Algorithm – 28 / 39

Expectation 30 / 39

Expectation

The expectation of a random variable is intuitively the long-run average value of repetitions of the experiment it represents.

Let X be a discrete random variable taking values x_1, x_2, \ldots with probabilities p_1, p_2, \ldots , respectively. The expectation (or expected value) of X is defined as

$$\mathbb{E}[X] = \sum_{i=1}^{\infty} x_i p_i \;,$$

assuming that this series is absolute convergent (that is $\sum_{i=1}^{\infty} |x_i| p_i$ is convergent).

Example: throwing two "fair" dice and the value of
$$X$$
 is is the sum the numbers showing on the dice.
$$\mathbb{E}[X] = 2\frac{1}{36} + 3\frac{2}{36} + 4\frac{3}{36} + 5\frac{4}{36} + 6\frac{5}{36} + 7\frac{6}{36} + 8\frac{5}{36} + 9\frac{4}{36} + 10\frac{3}{36} + 11\frac{2}{36} + 12\frac{1}{36} = 7 \; .$$

IN2245 - Combinatorial Optimization in Computer Vision

5. The Expectation Maximization Algorithm - 31 / 39

Expectation (cont.)

Let X be a (continuous) random variable with density function f(x). The **expectation** of X is defined as

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx ,$$

assuming that this integral is absolutely convergent (that is the value of the integral $\int_{-\infty}^{\infty}|x\cdot f(x)|\mathrm{d}x=\int_{-\infty}^{\infty}|x|\cdot f(x)\mathrm{d}x$ is finite).

Suppose a random variable X with density function f(x). The expected value of a function $g(x): \mathbb{R} \to \mathbb{R}$ is defined as

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f(x) dx ,$$

assuming that this integral is absolutely convergent.

IN2245 - Combinatorial Optimization in Computer Vision

5. The Expectation Maximization Algorithm - 32 / 39

Conditional expectation

Let (X,Y) be a discrete random vector. The conditional expectation of X given the event $\{Y=y\}$ is defined as

$$\mathbb{E}[X \mid Y = y] = \sum_{i=1}^{\infty} x_i P(X = x_i \mid Y = y) ,$$

assuming that this series is absolutely convergent.

Let (X,Y) be a (continuous) random vector with joint density function $f_{XY}(x,y)$. The **conditional expectation** of X given the event $\{Y=y\}$ is defined as

$$\mathbb{E}[X \mid Y = y] = \int_{-\infty}^{\infty} x \cdot f_{X|Y}(x \mid Y = y) dx,$$

assuming that this integral is absolutely convergent.

IN2245 - Combinatorial Optimization in Computer Vision

5. The Expectation Maximization Algorithm - 33 / 39

Conditional expectation (cont.)

Suppose a (continuous) random vector (X,Y) with joint density function $f_{XY}(x,y)$. The **conditional expectation of a function** $g(x): \mathbb{R} \to \mathbb{R}$ given the event $\{Y=y\}$ is defined as

$$\mathbb{E}[g(X) \mid Y = y] = \int_{-\infty}^{\infty} g(x) \cdot f_{X|Y}(x \mid Y = y) dx,$$

assuming that this integral is absolutely convergent.

IN2245 - Combinatorial Optimization in Computer Vision

5. The Expectation Maximization Algorithm - 34 / 39

EM algorithm

35 / 39

The Expectation Maximization algorithm

35 / 39

Latent variables

Suppose we are given a set of *i.i.d.* data samples $\{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ represented by the matrix $\mathbf{X} \in \mathbb{R}^{N \times D}$. The samples are drawn from a model (e.g., mixture of Gaussians) given by its parameters $\boldsymbol{\theta}$.

There are two main applications of the EM algorithm:

- 1. The data has missing values, due to limitations of the observation process.
- 2. The likelihood function can be simplified by assuming missing values.

Latent variables gathering the missing values are represented by a matrix Z.

We generally want to maximize the posterior probability

$$\hat{\boldsymbol{\theta}} \in \operatorname*{argmax}_{\boldsymbol{\theta}} p(\boldsymbol{\theta} \mid \mathbf{X}) = \operatorname*{argmax}_{\boldsymbol{\theta}} \sum_{\mathbf{Z}} p(\boldsymbol{\theta}, \mathbf{Z} \mid \mathbf{X}) \; .$$

Equivalently, one can maximize the log-likelihood

$$\mathcal{L}(\boldsymbol{\theta}; \mathbf{X}) = \ln p(\mathbf{X} \mid \boldsymbol{\theta}) = \ln \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}) .$$

IN2245 - Combinatorial Optimization in Computer Vision

5. The Expectation Maximization Algorithm - 36 / 39

The EM algorithm

1: Choose an initial setting for the parameters $\boldsymbol{\theta}^{(0)}$

2: $t \rightarrow 0$

3: repeat

4: $t \rightarrow t + 1$

5: **E step**. Evaluate $q^{(t-1)}(\mathbf{Z}) \stackrel{\Delta}{=} p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{(t-1)})$

6: **M step**. Evaluate $\boldsymbol{\theta}^{(t)}$ given by

$$\boldsymbol{\theta}^{(t)} = \operatorname*{argmax}_{\boldsymbol{\theta}} Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t-1)})$$

where

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t-1)}) = \sum_{\mathbf{Z}} p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{(t-1)}) \ln p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})$$

7: **until** convergence of either the parameters θ or the log likelihood $\mathcal{L}(\theta;\mathbf{X})$

IN2245 - Combinatorial Optimization in Computer Vision

5. The Expectation Maximization Algorithm – 37 / 39

Remarks

- The EM algorithm is not limited to Mixtures of Gaussians but can also be applied to other probability density functions.
- The algorithm does not necessary yield global maxima. In practice, it is restarted with different initializations and the result with the highest log likelihood after convergence is chosen.
- lacktriangle One can think the EM algorithm as an **alternating minimization** procedure. Considering $G(m{ heta},q)$ as the objective function, one iteration of the EM algorithm can be reformulated as

E-step: $q^{(t+1)} \in \underset{q}{\operatorname{argmax}} G(\boldsymbol{\theta}^{(t)}, q)$

 $\mathsf{M}\text{-step:} \quad \boldsymbol{\theta}^{(t+1)} \in \operatorname*{argmax}_{\boldsymbol{\theta}} G(\boldsymbol{\theta}, q^{(t)})$

IN2245 - Combinatorial Optimization in Computer Vision

5. The Expectation Maximization Algorithm - 38 / 39

Literature

- 1. A. P. Dempster, N. M. Laird and D. B. Rubin. **Maximum Likelihood from Incomplete Data via the EM Algorithm**. *Journal of the Royal Statistical Society*, Series B (Methodological), Vol. 39, No. 1. pp. 1-38, 1977.
- 2. Christopher Bishop. Pattern Recognition and Machine Learning. Springer, 2006. Note: Chapter 9.
- 3. Frank Dellaert. The Expectation Maximization Algorithm. TechRep: GIT-GVU-02-20, Georgia Institute of Technology, Atlanta, GA, USA, 2002.
- 4. Shane M. Haas. The Expectation-Maximization and Alternating Minimization Algorithms. Unpublished, 2002.
- 5. Yihua Chen and Maya R. Gupta. **EM Demystified: An Expectation-Maximization Tutorial**. TechRep: UWEETR-2010-0002, University of Washington, Seattle, WA, USA, 2009.

IN2245 - Combinatorial Optimization in Computer Vision

5. The Expectation Maximization Algorithm - 39 / 39