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5. The Expectation Maximization Algorithm 2 /39

Introduction

We are interested in a method to find the maximum likelihood estimator of a parameter 6 of a probability distribution p(z | 6).
Reminiscent of naming conventions:

p(x | 0)p(0
p0|0) = P20 o e 0) 00
d « ~
Posterior probability Likelihood  Prior probability
We are given finite amount of measurement (i.e. observed data) 1, z2,..., and also know the probability distribution p(z | #). The maximum likelihood

estimate of @ is given by R
0 € argmaxp(z | 0) .
0

A possible solution: Expectation Maximization Algorithm, which iteratively makes guesses about the data x, and iteratively maximizes p(x | 6) over 6.
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Multivariate Gaussian 4 /39

Multivariate Gaussian distribution 4 /39

Multivariate Gaussian distribution
Assume a D-dimensional random vector X = (X1,...,Xp), i.e. a vector whose components are random variables, with the joint density function

1 1 _
p(x1,...,xp) = ﬁexp (_ﬁ(x_ pis(x— ,u)> .

X is said to have multivariate Gaussian (or Normal) distribution with parameters u € R” and X € RP*P assuming that X is positive definite.
Reminder: A symmetric A € R™*™ matrix is said to be positive definite, if uZ Au > 0 for all ue R".
w is called the mean vector and X is called the covariance matrix. We often use the notation X ~ N (x | u, X) denoting X has Normal distribution.

Note that the Gaussian distribution has many important analytical properties. For example, it is “closed” under marginalization.
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Maximum likelihood for the Gaussian

Suppose we have a set of independent and identically distributed (i.i.d.) data samples {x1,...,

T .
can be represented as an [x; xy| =X eRV*P matrix.

We are interested to estimate the parameters p and 3 with the maximum likelihood framework. The log-likelihood function is given by

Inp(X | p, %)

N
=In [ [ p(xn | 1. 3)
1
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xn} drawn from a Gaussian distribution. The data set
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Maximum likelihood for the Gaussian (cont.)
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Maximum likelihood for u

N
Inp(X | 1, 2) = 257 n(2m) — S (|2 — 5 3 (xw — )5~ )

Setting the derivative of the log-likelihood function w.r.t. p to 0, we obtain

The maximum likelihood estimator for w is simply given by the center of the mass of the data, i.e. the sample mean.
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Maximum likelihood for X
N

(Xn - “)Tz_l(xn - /J’) .

n=1

ND N 1
Inp(X | p, ) = ——~In(27) — o In(|3%)) - 5

Setting the derivative of the log-likelihood function w.r.t. 3 to 0, we obtain

d N 0 15 0
—hnpX |, B =—=—=I(Z) - = Y —= ((xn — )= (x, —
N 1 1<
__ Y et _»-T _ _)I»-T
No, 198 _
= - 3% 1+§Zz Yxp — p) (% — ) 7271
n=1
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Maximum likelihood for X (cont.)

0 N 1Y
S (X | 1 B) == ST 40 ) ST (e = ) — )BT =0

n=1

IR T
= —Ngl(xn—u)(xn—u) :

This is, by definition, called the sample covariance matrix of the data.
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The geometry of the Multivariate Gaussian distribution

Let us consider the following form

A=/x—p)S x—p)

which is called the Mahalanobis-distance from p to x. In case of 3 = I we get the Euclidean-distance. Note that the quantity A? appears in the

exponent in the density function.
T2

The covariance matrix X is a real, symmetric matrix, hence its N us
W eigenvalues A\,..., \p are real, \/'u1
B eigenvectors uj,...,up € R? from an orthonormal set.
Therefore X! can be written as Y2
Y1
A2
A2
T
2D Gaussian

u; uiT

=

7

D 9
., which yields A% = Z L , where y; =ul(x—p).
o

~
Il
—_
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Two dimensional Gaussian distribution

The density function of the two dimensional Gaussian distribution is given by

1 1 1|z —
p(x1,22) = ———=exp (—5 [21 — 1 22— p2| = 1[ ' m}) ;

21/ %]

ot
pPoO102

pPO102
o3

whereuz[zl] andzz[ }for01,02>03nd—1<p<1.
2

Note that this density function can be written equivalently as

T2 — U2

1

1 e 20-p%)

201094/ 1 — p?

[p(xla mQ) =

((001*72"1)2 _2p(11*m1)(12*m2) n (302*72"2)2 >]

o] 9192 o
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Example: 2D Gaussian and its marginals

Assume X ~ N (x | p, X), where p = [;] and & — {0.5 0.25

1 . <
ol
075 P

8(:1}1 - 1)2

0.25 1 ] that is p = 0.5. The density function is given by

3

N 4y — 1)(2g —2)  2(x0 — 2)2> |

3 3

and the marginal distributions are defined by

px, () = — exp(—u),

0.5v/27 0.5
1 (w9 — 2)?
DX, (x2) = mexp (—72 5 ) )
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Mixtures of Gaussians 14 / 39

Mixtures of Gaussians

While the Gaussian distribution has some important analytical properties, it suffers from limitations when it comes to modelling real data sets. However the

linear combination of Gaussians can give rise to very complex densities.
Let us consider a superposition of K Gaussian densities ()4

Z 7Tk X ’ M, Ek)

is called a mixture of Gaussians.
The parameters 75 are called mixing coefficients.

Mixture of three Gaussians !
K
1 :fRD XdX—JRD ;lwk (x| py, X )dx sz
All the density functions are non-negative, hence m; = 0, therefore
0<m <1 forall k=1,... K.
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Mixtures of Gaussians (cont.)

We are provided with the joint distribution

K K K
p(x) = Y plk,x) = Y plk)p(x | k) = D m N(x | py, i) -
k=1

k=1 k=1

One can view

B 7, = p(k) as the prior probability of picking the k" component;
B N(x| py, Xg) = p(x | k) as the probability of x conditioned on k.

The posterior probabilities p(k | x), a.k.a. responsibilities, are denoted by ;. (x) and show the probability that a given sample x belongs to the k"

component.

p(x | k)p(k)  p(x|k)p(k)

p(k)p(x | k)

A

T3 E ) XK pp(x [ 1)
_ WkN(X|”k72k) )
SEm Ny, )
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Example: Mixture of three 2D Gaussians

0 0.5 1

Samples from p(k)p(x | k)

0.5

Samples from p(x)

0 0.5 1
Values of responsibilities
coded by RGB colors

(1) (%) 3(x)].

IN2245 - Combinatorial Optimization in Computer Vision

14

5. The Expectation Maximization Algorithm — 17 / 39



Example: Mixture of three 2D Gaussians

(b)

1 |
0.5¢ 0.5¢
0 0
0 0.5 1
Iso-countours of each
component

0

0.5 1

Iso-contours of p(x)

Surface plot of p(x)
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Maximum likelihood for mixture of Gaussians

Suppose we have a set of i.i.d. data samples {xy,...,Xy} drawn from a mixture of Gaussians. The data set is represented by X € RV*P,

The goal is to find the parameter vector 6 = (, u, X), specifying the model from which the samples x,, have most likely been drawn. We may find the
parameters which maximize the likelihood function

N

N K
6 € argmax p(X | @) =argmax H p(Xy, | @) =argmax H Z TN (Xn | P, Zk) -
o e n=1 0 n=1k=1

To simplify the optimization we use the log-likelihood function £(0)

6 € argmax £(0) = argmax Z In { Z e N (xn | pg, Ek)} .
e n=1

Note that there is no closed-form solution for this model = iterative solution.
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Maximum likelihood for u

K
BEargmaXZln{Zwk (xp, |uk,2k)} s.t. 7Tk>0,27rk= 1.
n=1 k=1

We calculate the derivative of £(0) w.r.t. p,

N(xn | e, Zi)

N PR
= TN (X | pg, 2
8!% Z:: m/\/(xn\p,l,El) oy, 1;1 RN (e | s )
N d

p 17er(Xn | 1y, 20) Ob
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Maximum likelihood for p (cont.)

Let us now consider the derivative of a Gaussian only

0 1 0 1
N (X | e Zpp) =—— =— — = (xn — ) T2 (% —
V000 | s Z) = e (= 5000 — )T 060 = )
__ 1 T T 1y
s o (5 0o = i) TE G = ) 2 o )

=N (xn | py, Zp) By

By substituting back we get

1(Xn — ) -

0 N TN (Xn | g, B _
L=y | o e e ).
F n=1 Duey T N (% | g, )
Yok 2k (%)
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Maximum likelihood for p (cont.)
Setting the derivative of £(6) w.r.t. p; to 0, we obtain
P N
=—L(0) = ) vk Zg  (xn — py,) =0
aﬂk nZ::l " k " F
N N
—1Tnk X
Z Yok (Xn — pg) =0 = My = w
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Maximum likelihood for X

K
OeargmaXZID{Zwk Xn\p,k,Ek)} s.t. 7rk20,27rk=1.
n=1

We calculate the derivative of £(0) w.r.t. Xy,

N
0
N(xn | pg, Zie)
&Ek 7;1 p 17TIN(Xn | g, 3) 0%k

Let us now consider the derivative of a Gaussian only
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Maximum likelihood for X (cont.)

We calculate the following derivatives:

0 1 1 0 ) 1 -1 5 —x!
= iz = — |3 2| s ——
SeA/2r8k]  (2m)% S (2m)% 2 22522 2¢/[2m3]
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Maximum likelihood for X (cont.)

Now we are at the position to calculate the derivative of a Gaussian w.r.t. X

0
a—EkN(Xn | tg, X
(e (5 o )T e )
= ex — X X, —
azk ’27T2k’ P n — Mg k n — K
—»-! 1
k T
= —(x 3 (xpy — )
T P (500 — )T 6w )
1 1 1 _ _ _
+ s exp ( - _(Xn - /J’k)TEk I(Xn - “k))zk I(Xn - .U’k)(xn - /J’k)TEk !
2 /21| 2
——12*1/\/ b 1/\/ 202 (x, — — )Tt
=T 5% (Xn | p k)+2 (Xn | gy B) 2L (Xn — pg) (X — )" By
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Maximum likelihood for X (cont.)

Setting the derivative of £(0) w.r.t. 3 to 0, we obtain

0 N " 0
—L£(0) = N(x, DY
0%y, ©) 7;1 leil TN (X | py, Bp) 0%k G | i, )

1 i S N (% | g k)
D) K
2 2 mN (xn | g, 2)

1 ]Zvl TN (%5 | ey ) 25 (%0 — ) (X0 — py) T2, !
2

K

n=1 Sue1 MmN (xn | g, %)

_271 N 271 N -
S S S - - B 0

n=1 n=1

- >, = 27];[:1 Yk (Xn — ) (Xp — Nk)T
k= N
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Maximum likelihood for 7

To integrate the conditions on 7t we use the Lagrange multiplier method

K
BEargmaXZIHZwk (xn | g i) + A(1 Zwk
n=1 k=1

Setting the derivative w.r.t. m; to 0, we obtain

N
a1 Ii W\/(Xn | g, X)

221 L TN (X | gy B Zm . N-—)
n=1 l= 17TIN(Xn|H[,El =1

N N
S omNCalme B [m _ Zn:mk]
n=1 2121 mN (xn | NZ’EZZ N
Tnk
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The EM Algorithm for mixtures of Gaussians

1: Initialize the means p,, covariances 3y and mixing coefficients 7y
2: repeat
3: E step. Evaluate the responsibilities using the current parameter values

e N (X | py, Zi)
SE MmN (xn | s Z0)

TYnk =

4: M step. Re-estimate the parameters using the current responsibilities

N N
new _anl TnkXn Snew _ Zn=1 ’Ynk(xn — Hzew)(xn — HzeW)T
K =——=N > E= N
N
qhew Zn:l TInk
F N
5: until convergence of either the parameters 6 or the log likelihood £(8)
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Example

(f)
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Expectation
The expectation of a random variable is intuitively the long-run average value of repetitions of the experiment it represents.

Let X be a discrete random variable taking values x1, z2,... with probabilities p1,pa,. .., respectively. The expectation (or expected value) of X is
defined as

a0
E[X] =) zipi
i=1

assuming that this series is absolute convergent (that is > ;7 |z;|p; is convergent).

Example: throwing two “fair” dice and the value of X is is the sum the numbers showing on the dice.
1 2 3 4 5
E[X]=2—=+3—=4+4—=+5—+6—
X1 36 * 36 * 36 * 36 * 36

1

6 5 4 3 2
— — —+10=+11—=+12—=17.
* 736 - 836 - 936 * 036 - 36 * 36 7
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Expectation (cont.)

Let X be a (continuous) random variable with density function f(z). The expectation of X is defined as

assuming that this integral is absolutely convergent (that is the value of the integral Siooo |z - f(x)|dx = Siooo |z| - f(z)dx is finite).

Suppose a random variable X with density function f(z). The expected value of a function g(z) : R — R is defined as

assuming that this integral is absolutely convergent.
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Conditional expectation

Let (X,Y") be a discrete random vector. The conditional expectation of X given the event {Y = y} is defined as
a0
E[X|Y =y]l=) 2P(X =2;|Y =y),
i=1

assuming that this series is absolutely convergent.

Let (X,Y) be a (continuous) random vector with joint density function fxy (z,y). The conditional expectation of X given the event {Y = y} is defined

as
o0

E[X|Y=y]=f - fxy(@ | Y = y)da,

—0Q0

assuming that this integral is absolutely convergent.
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Conditional expectation (cont.)

Suppose a (continuous) random vector (X,Y") with joint density function fxy(z,y). The conditional expectation of a function g(z) : R — R given the
event {Y = y} is defined as

Q0
BlgC0) | Y =3 = | g@) frv(e | ¥ = s,
—o0
assuming that this integral is absolutely convergent.
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EM algorithm 35 /39
The Expectation Maximization algorithm 35/ 39
Latent variables
Suppose we are given a set of i.i.d. data samples {x1,...,xy} represented by the matrix X € RV*P_ The samples are drawn from a model (e.g., mixture of

Gaussians) given by its parameters 6.
There are two main applications of the EM algorithm:

1. The data has missing values, due to limitations of the observation process.
2. The likelihood function can be simplified by assuming missing values.

Latent variables gathering the missing values are represented by a matrix Z.

We generally want to maximize the posterior probability

0 € argmax p(0 | X) = argmapr(O, Z|X).
0 0 7

Equivalently, imize the log-likelihood
quivalently, one can maximize the log-likelihoo £(6:X) = np(X | 0) = anp(X,Z ).
Z
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The EM algorithm

: Choose an initial setting for the parameters 6

1

2. t—0

3: repeat

4: t—t+1

5. E step. Evaluate ¢t~ (Z) 2 p(Z | X,0(7D)
6: M step. Evaluate ) given by

where

0 = argmax Q(0,0"1)
0

Q6,0"1) =3 p(Z | X,6¢" V) Inp(X,Z | 6)

V4

7: until convergence of either the parameters 6 or the log likelihood £(6;X)
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Remarks

likelihood after convergence is chosen.

algorithm can be reformulated as

B The EM algorithm is not limited to Mixtures of Gaussians but can also be applied to other probability density functions.
B The algorithm does not necessary yield global maxima. In practice, it is restarted with different initializations and the result with the highest log

B  One can think the EM algorithm as an alternating minimization procedure. Considering G(0,q) as the objective function, one iteration of the EM

(t+1)

E-step: ¢ € argmax G(B(t), q)
q

M-step: U+ € argmax G (6, q(t))
0
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