

6. Graph Cut – 16 / 32

IN2245 - Cor

ut Network Flow Graph Representable Energies Image Segmentation Graph Cut

Theorem 4. If the Ford-Fulkerson algorithm terminates, it computes a maximal flow resp. a minimal cut of $G = (V, \mathcal{E}, c, s, t)$.

Theorem 5. The Ford-Fulkerson algorithm terminates for $G = (V, \mathcal{E}, c, s, t)$ if $c: \mathcal{E} \to \mathbb{N}_0$ or $c: \mathcal{E} \to \mathbb{Q}_0^+$.

Proof. The maximal flow is bounded from above by $K := \operatorname{Cut}(s, V - s)$. If $c \colon \mathcal{E} \to \mathbb{N}^+$, the flow is increased in each augmentations step by at least 1. Thus, the algorithm terminates after no more than K iterations. If $c \colon \mathcal{E} \to \mathbb{Q}$, the capacity $c(e_i)$ of each edge e_i $(i = 1, \ldots, |\mathcal{E}|)$ can be written as $\frac{p_i}{q_i}$. $c(e_i)$ is therefore a multiple of $\epsilon = \prod_{i=1}^{|\mathcal{E}|} \frac{1}{q_i}$ and each augmentation step increases the flow by at least ϵ . Thus, the algorithm terminates after no more than $\frac{K}{\epsilon}$ iterations.

Example of Non-Termination

ble Energies Image Segmentation

There exists an example where the computed flow does not even converge to the maximal flow. To this end, let $g=\frac{\sqrt{5}-1}{2}$ the number of the golden section. It satisfies the relationship $1-g=g^2$.

We define the network $G=(V,\mathcal{E},c,s,t)$ as follows

$$\begin{split} V = &\{1, 2, 3, 4, 5, 6, s, t\} \\ \mathcal{E} = &\{s\} \times \{1, \dots, 6\} + \{1, \dots, 6\} \times \{t\} + \{1, \dots, 6\} \times \{1, \dots, 6\} \\ &- \{(2, 1), (4, 3), (6, 5)\} - \{(1, 1), \dots, (6, 6)\} \\ c(e) = &\begin{cases} 1 & \text{if } e = (1, 2) \text{ or } e = (3, 4) \\ g & \text{if } e = (5, 6) \\ K & \text{otherwise} \end{cases}, \end{split}$$

where K > 1 + g is an arbitrary big number. One can easily verify that the maximal flow of this network is 6K.



