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6. Graph Cut
Graph Cut

2 /32
3/32

Graph Cut
A directed graph or digraph is a triple (V, &, ¢) with

B the finite vertex set V = {1,..., N},
B the finite edge set £ < {(i,5) € V x V|i # j} and
B the weight function ¢: £ - R.

A cut is a disjoint partition (S,T") of V, i.e., V=S + T, and its cut value is

Cut(S,T) = >, cle).

eeENSXT

Given two different vertices s,t € V', (S,T) is called an s-t cut if s € .S and ¢t € T'. Given such s and ¢, we call (V,€&,¢,s,t) a network.

The cut problem resp. s-t cut problem is to find a cut resp. s-t cut (S,7T') that minimizes its cut value Cut(S,T).
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Submodularity of MinCut
Theorem 1. Let G = (V, &, ¢, s,t) be a network, Vi :==V — {s,t} and

E:PW) —-R A Cut(A + {s}, Vo — A + {t}).
Then E is submodular iff c(e) = 0 for all e € £.

Proof. For each A < Vj, define z: V — B via x; := [i € Vp + {s}]. Then

E(A)=E(x):= ) cli,j) T

(i,§)e€
Observing that
83:?233]E(x) B {;C(ijj) :t&rj\;\)/i:eg foralli,j eV
proves the theorem.
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Network Flow 6/ 32

Maximum Flow

Ford and Fulkerson proved that there is a relationship between the discrete graph cut problem and the continuous maximum flow problem.
Let (V,&, ¢, s,t) be a network with positive edge weights. We will refer to c(e) as capacity of e € £. A function f: & — R* is called a flow if

f(e) < cle) forallee &
Z f.9) - Z f(3,i) =:div f(i) = 0 forallieV —{s,t}

(i,4)e€ (J,1)e€

The negative of the divergence div f is sometimes referred to as excess, since it measures the amount of flow that enters a node but does not exit it.
The flow value of f is

Flow(f) :=div f(s) = —div f(t)

The maximum flow problem looks for a flow f that maximizes Flow/(f).
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MaxFlow-MinCut Theorem
Theorem 2. Let G = (V,€,¢,s,t) be a network. Then

Fl = i Cut(S,T
frirslafl}éw OW(f) (S,T)rigusn—tcut 11( )

We assume that ¢(i,j) > 0. If this is not the case, we can remove the zero-edges from £ without changing the MaxFlow or the MinCut problem.
Given a flow f of G, we define the residual graph Gy := (V,&f) via

& = fee £lf(e) < cle)} u{e e E7[f(e) > 0}
where £71 = {(i,j) € V?|(j,i) € £} refers to the set of reversed edges.

Given U < V, we define the divergence of U as

divg(U) == > fwi— D flu) =) divf(u)

(u,§)EENUXU (i,u)eENU XU uelU
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Proof of MaxFlow-MinCut Theorem
Proof. We will first show that for an arbitrary flow f and cut (S,T"), we always have Flow(f) < Cut(S,T):
Flow(f) =div f(s) = divf(S5)
= > flwi— D, flu) <Cu(ST)

(u,j)EENSXT (i,u)eENT xS
Let us now assume that f* is a maximal flow and define S < V' as the set of all vertices that are path-connected to s in the residual graph G sx.

Casel t¢S
Every edge (i, j) € € that leaves S is not an edge of g« i.e., f*(i,7) = c(i, j). The reverse edge of every edge (i, j) € £ that enters S is also not an edge
of Epx,ie., f*(i,5) = 0. Therefore,

Cut(S,V — S) = divy(S) = Flow(f)
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Proof of MaxFlow-MinCut Theorem

Proof. (Cont.)

Case2 te S
There is a path of edges e, ..., e € &= that connects s with £. We define the positive residuals

cle;) — f*(e;) ife; €€
€ 1=
e ife;le€
Setting € = min;—q ;€ > 0, we can define a new flow
f*(e) + e ife=e; for some k
fle):=< f*(e)—¢ ife = e for some k
f*(e) otherwise

with Flow(f) = Flow(f*) + € which contradicts the optimality of f*.
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Ford-Fulkerson Algorithm

From the MaxFlow-MinCut theorem, we obtain the following algorithm to compute the minimal s — ¢ cut (S,T') in the network G = (V, &, ¢, s, ).

Set f: £ >R as f(e)=0foralleeé.

If there is no path in Gy that connects s with ¢, go to Step 5.

Let e1,..., e, be a path from s to ¢, ¢; the positive residuals as in the proof of the MaxFlow-MinCut theorem and € := min; <;<x €;.
Replace the flow f with the augmented flow

e e

f*(e) + € if e= e for some k
f(e) =< f*(e) —e ife ! = ¢ for some k

f*(e) otherwise

and go to Step 2.
5. Let S be the path-connected component of s in Gyand T'=V — S.
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Example

Network G Flow f Residual Graph G

[teration 0: The flow value is 0.
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Example

Network G

Flow f Residual Graph G

[teration 1: The flow value is 2.
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Network G

Flow f Residual Graph G

[teration 2: The flow value is 4.
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Energy Reparametrisation

Theorem 3. For x1,...,x, € B the following holds
n—1
x1 + [Z TiTit1 — xi+1§i] + z, = 1.
i=1
Proof. Exercise. U
If we augment in a network G a flow along the path (s,i1,...,iy,,t) from s to ¢, we can understand this as reducing the capacity along this path and adding

capacity along some edges along the reversed path.

This theorem shows that the Ford-Fulkerson algorithm can be understood as a reparametrisation of the energy that describes the graph cut problem. It
changes the energy by increasing the constant during each iteration.
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Example
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Network G

Flow f()
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Flow f1
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E(x) =3T4 + 3Tp + 20ATp + 3xATc + 2xpTp + brpTo + 2xc + 3xp

=24+ 1T4+ 3T + 22T A + 3xATc + 22pxTp + 3xpTc + 220Tp + 3xp

=44+ 1T4 + 1T + 224Tp + lxaTc + 2207 A + 22pTp + dbxpTo + 1lxp
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Properties

Theorem 4. If the Ford-Fulkerson algorithm terminates, it computes a maximal flow resp. a minimal cut of G = (V, &€, ¢, s,t).
Theorem 5. The Ford-Fulkerson algorithm terminates for G = (V,&,¢,s,t) ifc: € —> Ny orc: € — Q.

Proof. The maximal flow is bounded from above by K := Cut(s,V — s). If ¢c: £ — N, the flow is increased in each augmentations step by at least 1.
Thus, the algorithm terminates after no more than K iterations.
If c: € — Q, the capacity c(e;) of each edge ¢; (i = 1,...,[€|) can be written as £-. c(e;) is therefore a multiple of € = H‘Zﬂl % and each augmentation

step increases the flow by at least €. Thus, the algorithm terminates after no more than % iterations.
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Example of Non-Termination

There exists an example where the computed flow does not even converge to the maximal flow. To this end, let g = @ the number of the golden
section. It satisfies the relationship 1 — g = ¢°.
We define the network G = (V, &, ¢, s,t) as follows
V ={1,2,3,4,5,6,s,t}
E={s} x{1,...,6} +{1,...,6} x {t} +{1,...,6} x{1,...,6}
- {(27 1)7 (47 3)7 (67 5)} - {(1’ 1)’ RS (6’6)}
1 ife=(1,2) ore=(3,4)
cle)=<g ife=(506) ;
K otherwise
where K > 1 + g is an arbitrary big number.
One can easily verify that the maximal flow of this network is 6 K.
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Example of Non-Termination

Lemma 1. There is an instance of the Ford-Fulkerson algorithm that if applied to the previously defined G satisfies at each Iteration n = 0:

1. There are edges e; = (uy,v1), €2 = (u2,v2),e3 = (u3,v3) in Gy of pairwise non-incident vertices with the residual values
e(e1) = g e(ea) = g"F e(ez’) = 0.
2 Flow(f) =YY" 9" <1+yg.

Proof.

Casel: n=0
The lemma is satisfied for ey = (1,2), es = (5,6) and ez = (3,4).
Case2: n—o>n+1
Augmenting the path s, uq,v1,ug, v, us, vs,t proves the lemma for n + 1 and the edges e; = (v3,us), e2 = (u1,v1), ez = (va, uz).
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Example of Pseudo-Polynomiality

N/@\N /@\1 1/@\1 N/@\N
A—1>B A — B

1
A — B A — B
SCAER AR S o
Network G Flow f Flow f Flow f
Iteration: 1 [teration: 2 Iteration: 2N

A graph can take 2N iterations where N is the highest capacity in the graph. Thus, Ford-Fulkerson has a pseudo-polynomial running time for ¢: £ — Nj.

It was shown by Dinitz (1970) and independently by Edmonds and Karp (1972) that the maximal flow method becomes polynomial if one always uses the
shortest path (amount of edges) from s to t in the augmentation step.
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Graph Representable Energies 21 / 32

Submodular Energies with 2-Cliques

We saw that every graph cut problem can be represented as a submodular energy that uses cliques of size 2 or smaller. The opposite is also true:

Theorem 6. If E(x) = C + ), ., Cizi + ZMEQ Cijx;xj is submodular, the minimization of E can be cast as a graph cut problem.
Proof. Taking the second derivatives of E, we see that C;; < 0 has to be satisied for all ¢, j € 2. For these negative C;; we have
Cijxixj =Cijxi(1 — Tj) = ngxz — Cz‘jl‘ifj = Cij — Cz‘jlfi — Cz‘jl‘ifj.

In addition, we have for C; < 0 that C;z; = C; — C;1z;.
For C; > 0, we obtain C;x; = C;z;0.
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Image Segmentation 23 /32

Data Driven Image Segmentation

Given Image Data Term Global Minimum

Every segment A < Q induces a binary variable z € B with N := |(]

N
argmin F(z) = argmin Z [fi(l)xi + fi(o)fi]

zeBN zeBN i=1

N N N

: (0) (1) (0) :

=argmin » f' + 7 — 7 |z, = argmin »  fix;
zeBN ; ' ;[g/—z/] zeBN ;

=:fi

This energy can be minimized in linear time.
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Length Regularization

Given Image Data + Length

To every pixel i, we define N/(i) as the set of neighboring pixels of i.

zeBN zeBN ;3

This energy is submodular and only uses quadratic expressions.
Thus, it can be efficiently optimized via graph cut.

Global Minimum

argmin F(z) = argmin Z fixi + Z Z c(i,§)iT;

i=15eN (i)
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Length Approximation

The quadratic expression Q(z) = Zf\il Zje/\/(z’) c(i,j)z;T; is sometimes referred to as the length of the boundary 0A. What is actually counts is the
amount intersections that straight lines have with JA.

Every line L = R? in a plane can be parametrized by its normal v = (cos(f),sin(6)) and the scalar product {p,v) = « for all p € L. We will write L(v, «)
for such a line.

Therefore, Q) is a discrete approximation of

((A) = Lﬁ JOOOO #(L(v, ) n 0A)dady

According to the Cauchy-Crofton formula we have /(A) = 2length(0A). This justifies calling @ the length term of our energy.
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Improving Length Approximation

0000 00000 0QOPO
0000 O o
@ @ O @ O
0000 O o
0000 00000 00000

4-neighborhood 8-neighborhood 16-neighborhood

@

In the case of the 4-neighborhood and the 8-neighborhood all edges have to be weighted by 7 resp. %.

For the 16-neighborhood different edges have to be weighted differently.

To get a good approximation of the length, we have to weigh each edge (u,v) with the angle distance to its neigboring edges that are also incident to u.
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Interactive Graph Cuts

Boykov and Jolly were the first to show that graph cut based method can be used for interactive image segmentation.

To this end, let T: © — R? be an image into a d-dimensional color space.

The user provides disjoint subsets O, B < 2 that are marked as object (O) and background (B). These subsets are called seeds.
With respect to the seeds probability distributions p for foreground and ¢ for background are computed.

p(I(3)) 202
Minimize the energy E(x) = ZZ]L fixi + sz\il 2jen() c(i, j)z;T; and obtain a cut (S,T).
Update p and ¢ with respect to S and 7. If p or ¢ changes go to Step 3.

S provides for an image segmentation.

ok W hE

The data term of a pixel 7 is set to f; := log (qu(i))) The length term between two pixels is set to ¢(i,j) = Aexp (—M

y
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Example (Interactive Graph Cut)

Image with Seeds Undirected Edges Directed Edges

Instead of undirected edges between two neighboring vertices, one can also define the capacity depending on the edge. Boykov and Jolly proposed

{1 if 1(p) < 1(q)
c(p,q) =

exp <_[I(p)2;7[2(‘1)]2> otherwise

to favor segmentation edges between bright regions (O) and dark regions (B).
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GrabCut Protocol

The interactive Graph Cut was patented by Siemens. A slightly different protocol, called GrabCut, was patented by Microsoft:

To this end, let T: © — R? be an image into a d-dimensional color space.

1. The user provides a bounding box around the object.
2. With respect to this bounding box, probability models p for foreground and ¢ for background are estimated (using Gaussian mixture models).
3. The data term of a pixel i is set to f; := log (Zgg%) The length term between two pixels is set to ¢(i,j) = Aexp (—W)
4. Minimize the energy E(x) = ZZJL fixi + ZZJL 2jen() (i, J)z;T; and obtain a cut (S,T).
5. Update p and ¢ with respect to S and 1. If p or ¢ changes go to Step 3.
6. S provides for an image segmentation.
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Example (GrabCut)

Original Image User Interaction Segmentation
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