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Given a network G “ pV, E , c, s, tq, both the capacity function c and a flow f can
be interpreted as vectors c, f P R|E|. The MaxFlow can be rewritten as

max z

subject to 0 ď fe ď ce for all e P E
rdiv f si “ 0 for all i P V ´ ts, tu
rdiv f ss “ `z

rdiv f st “ ´z

z ě 0

Here, div : R|E| Ñ R|V | is a linear mapping that maps information from the edges
to information on the vertices.

Note that the objective function and the constraints are all linear.
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A Linear Program (LP) is an optimization problem of a linear function with
respect to linear constraints, i.e.,

"
min
max

*

xPRn

xc, xy

subject to xai, xy
$
&
%

ď
“
ě

,
.
- bi for all i “ 1, . . . ,m

If we use the following partial ordering on Rn:

x ď y ô xk ď yk for all k “ 1, . . . , n

we can simplify the notation of LPs.

Canonical and Standard Form
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An LP is in canonical form if it is of the form

max
xPRn

xc, xy
subject to Ax ď b

x ě 0

for a constraint matrix A P Rmˆn, a constraint vector b P Rm and a cost
vector c P Rn. We have n variables and m constraints.

An LP is in standard form if it is of the form

max
xPRn

xc, xy
subject to Ax “ b

x ě 0

LP Transformation
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Every minimization problem becomes an equivalent maximization problem by
replacing c with ´c.

Note that the following equivalences can transform the constraints of an LP in
purely “ď” or ““” constraints:

xai, xy ěbi ô x´ai, xy ď ´ bi

xai, xy “bi ô x`ai, xy ď
x´ai, xy ď

`bi,
´bi

xai, xy ďbi ô xai, xy ` si “bi

The extra variable in the last equivalence is called slack variable si ě 0.

If a variable xi is not constrained (xi ě 0), one can use two constrained variables
x`
i , x

´
i ě 0 and replace each occurence of xi with x`

i ´ x´
i .

Maximal Flow as LP
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The canonical form of the MaxFlow problem is

max
fPR|E|,zPR

z

subject to

¨
˝

Id 0
div p1t ´ 1sq

´div ´p1t ´ 1sq

˛
‚

ˆ
f
z

˙
ď

¨
˝
c
0
0

˛
‚

f, z ě 0

The standard form of the MaxFlow problem is

max
f,rPR|E|,zPR

z

subject to

ˆ
Id Id 0
div 0 p1t ´ 1sq

˙ ´
f
r
z

¯
“

ˆ
c
0

˙

f, r, z ě 0



Basic Feasible Solutions
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In the following, we assume that an LP is given in its standard form and that A is
of maximal rank, i.e. rankpAq “ m ď n. If x ě 0 satisfies Ax “ b, x is called
feasible.

Given the decomposition t1, . . . , nu “ B ` N with |B| “ m, we can define AB as
the submatrix of A that contains only those columns ai with indices i P B. Since
A has maximal rank, we can select B such that AB P Rmˆm has maximal rank
and we can compute

xB “ A´1
B b

xB only defines those entries of x whose indices are in B. Filling the rest of x with
zeros (xN “ 0), we obtain a feasible x. Feasible x that are created in this way
(x “ xB ` xN ) are called basic feasible solutions.

Fundamental Theorem of LP (Part 1)
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Theorem 1. If there is a feasible x, there is a basic feasible solution x1.

Proof. Without loss of generality, let us assume b “ řk
i“1 xia

i with xi ą 0.

Case 1: The k ai are linearly independent.
k “ m proves the theorem. Otherwise, m ´ k of the remaining vectors form a
base and x is a basic feasible solution with respect to these indices.

Case 2: The k ai are linearly dependent.
We have 0 “ řk

i“1 λia
i with at least one λi ą 0 and thus for all ǫ ą 0

b “
kÿ

i“1

pxi ´ ǫλiqai

Choosing ǫ “ min
!

xi
λi

ˇ̌
ˇλi ą 0

)
creates a feasible solution x1 “ x ´ ǫλ that uses

at most k ´ 1 positive variables. Iterating this step leads eventually to the 1st

case of linear independence.

Fundamental Theorem of LP (Part 2)
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Theorem 2. If x˚ is feasible, there is an optimal basic feasible solution x1.

Proof. Without loss of generality, let us assume b “ řk
i“1 xi̊ a

i with xi̊ ą 0.

Case 1: The k ai are linearly independent. (Analogously as before)
Case 2: The k ai are linearly dependent.

Create analogously as before x1 “ x˚ ´ ǫλ and we have

@
c, x1D “ xc, x˚y ´ ǫ xc, λy

If xc, λy ‰ 0, we could improve x˚ for small ǫ, which contradicts the optimality
of x˚.
Thus, xc, λy “ 0, which proves the optimality of x1. x1 is a feasible solution that
uses at most k ´ 1 positive variables. Iterating this step eventually leads to the
case of linear independence and thus, proves the theorem.

Simplex Method

Linear Programming Simplex Method Dual LP Graph Cut as LP

Idea of the Simplex Method

Linear Programming Simplex Method Dual LP Graph Cut as LP

IN2245 - Combinatorial Optimization in Computer Vision 7. Linear Programming – 13 / 33

We saw that it is enough to restrict ourselves to basic feasible solutions.

Since a basic feasible solution only depends on the choice B Ă t1, . . . , nu, we have
no more than

`
n
m

˘
basic feasible solutions.

The Simplex method works as following

1. Find a basic feasible solution x.
2. If xc, xy is not optimal, find a better basic feasible solution.
3. Iterate until convergence.

The main challenge is to perform Step 2 as efficiently as possible.

There are certain LPs for which Step 1 is difficult as well.
For the problems we will consider, this step will be very easy.

Pivot Operation
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Let us assume that we have a basic feasible solution x P Rn with its basic set B.
This means b “ ř

iPB xiai.

Since the paiqiPB form a base of Rm, we also have

aj “
ÿ

iPB
yijai for all j R B

for y˚j “ A´1
B aj .

For a small ǫ ě 0, we have b “ ǫaj ` ř
iPBpxi ´ ǫyijqai, which creates a feasible,

but not basic feasible solution xǫ [pxǫqj “ ǫ and pxǫqi “ xi ´ ǫyij ]. For

ǫ “ mink

!
xk
ykj

ˇ̌
ˇ ykj ą 0

)
, xǫ becomes a basic feasible solution w.r.t. the basic set

B ´ tku ` tju where k is the minimizing index that defines ǫ.

Choosing a Good Pivot Operation
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The pivot operation changes B by replacing one element with an element that is
not in B. Now, we want to address, which element we should remove in order to
improve the cost function with respect to the basic feasible solution that is
associated with B.

Given a basic set B with its x “ pxB, xN q the constraint Ay “ b becomes

`
Id A´1

B AN

˘ ˆ
yB
yN

˙
“ A´1

B b

and the cost function becomes for yN ‰ 0

xc, yy “ xyN , cNy ` @
A´1

B pb ´ ANyN q , cB
D

xxB, cBy `
A
cN ´ AJ

NA´J
B cB, yN

E

We can improve the solution iff cN ´ AJ
NA´J

B cB has positive entries.

Simplex Algorithm
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The theory that we studied so far explored everything we need to know in order to
solve an LP.

Given a basic feasible solution defined by B, we know whether it is optimal or not.
If it is not optimal, we know how to change B in order to get an improved
solution. In addition, we know how xB will change if we change B.

The actual Simplex Algorithm that we discuss now combines this knowledge in
order to reduce the computational complexity. After all, we do not want to
recompute A´1

B in every iteration.

To this end, we will store an LP that is equivalent to the original LP. This
representation is called the Simplex Tableau.



Simplex Tableau
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Given a basic feasible solution xB and its basic set B, the simplex tableau is a
pm ` 1q ˆ pn ` 1q matrix of the following form

ˆ
0 cJ

N ´ cJ
BA

´1
B AN ´ xcB, xBy

Id A´1
B AN A´1

B b

˙

If the first row has a positive entry (at position j), we can improve the solution by

adding j to B. Select i P argmin
! pA´1

B bqi
pA´1

B ajqi

ˇ̌
ˇ pA´1

B ajqi ą 0
)
and pivot the jth

column of the tableau, i.e, perform Gaussian elimination until the jth column is the
pi ` 1qth unit vector.

This operation only changes the ith column among the first m columns. In
particular, one can show that we obtain a tableau with respect to B ´ i ` j.

Simplex Tableau
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The pivoting operation can be summarized in the following form:
At each step, there exists a vector v P Rm such that the tableau is representable as
the following product

ˆ
1 ´vJ
0 A´1

B

˙
¨
ˆ
cJ 0

A b

˙
“

ˆ
1 ´vJ
0 A´1

B

˙
¨

ˆ
cJ
B cJ

N 0

AB AN b

˙

“
ˆ
0 cJ

N ´ cJ
BA

´1
B AN ´ xcB, xBy

Id A´1
B AN A´1

B b

˙

Note that the first equality is only true after reordering the columns.

It is easy to check that vJ “ cJ
BA

´1
B .

Running Time
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Each iteration takes Opmnq steps and there are at most
`
n
m

˘
basic feasible

solutions. Therefore, the running time is finite, but may be exponential.

There are methods that can solve the problem in polynomial time, but are
numerical less stable than the simplex method. In practice, the simplex method is
often quite fast and does not visit every basic feasible solution.

Nonetheless, there is an LP for which the simplex method might visit every of its
2n basic feasible solutions. For 0 ă ǫ ă 1

2 this is such an example

max
xPRn

xn

subject to 0 ď x1 ď 1

ǫxi ď xi`1 ď 1 ´ ǫxi for all i “ 1, . . . , n ´ 1

Integer LP
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If we want to minimize pseudo-Boolean functions, we want to add the constraint
xi P B for each variable. This is equivalent to the following two constraints

0 ď xi ď 1 xi P Z

The first constraint fits well into the LP framework.

An Integer Linear Program (ILP) is an LP for which we add an integer
constraint to the variables. Minimizing an ILP is NP hard.

Nonetheless, some well behaving ILPs are solvable using the LP framework

■ Dropping the integer constraints on the variable leads to an LP
■ This LP might have an optimizer x P Rn

■ If x P Zn, the ILP is solved by x.

Solving ILP via LP
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Let us assume that we have the following maximization problem

max
xPZn

xc, xy
subject to Ax “ b

x ě 0

with b P Zn and A P Zmˆn.

Let us assume that the LP that ignores the integer constraint will find a solution
x “ xB ` xN with

xB “ A´1
B b xN “ 0.

Since b P Zm, the ILP would be solved if A´1
B P Zmˆn. While this is not true in

general, we can classify those matrices that give rise to integer solutions.

Totally Unimodular Matrix
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A matrix A P Rmˆn is called totally unimodular if the determinant of any
quadratic submatrix is either ´1, 0 or `1.

Lemma 1. If A P Zmˆn is totally unimodular, we have A´1
B P Zmˆn for any basic

set B Ă t1, . . . , nu.
Proof. Let M P Rmˆm be an arbitrary invertible matrix. Then we denote by
m#

i,j “ p´1qi`j detpMj,iq the determinant of the submatrix of M after removing

the jth row and the ith column of M . This creates a new matrix M# and for the
product of these matrices we have MM# “ detpMq ¨ Id.
In other words, A´1

B “ ˘A#
B , which proves the lemma.

Classification of Total Unimodularity
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If A P Rmˆn is totally unimodular, we have A P t´1, 0, 1umˆn.

Given A P t´1, 0, 1umˆn, there is a very useful classification by Ghouila-Houri of
totally unimodular matrices:

Theorem 3. Iff for every selection of rows paiqiPR, there is a separation
R “ R` ` R´ such that

ř
iPR` ai ´ ř

iPR´ ai P t´1, 0, 1un, the matrix A is
totally unimodular.

The matrix div : R|E| Ñ R|V | that we used for the maximal flow description is
totally unimodular.

If a matrix A is totally unimodular,
`
A Id

˘
is totally unimodular.

If a matrix A is totally unimodular, AJ is totally unimodular.

Dual LP
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Given a primal LP in canonical form

(P) max
xPRn

xc, xy
subject to Ax ď b

x ě 0

its dual LP is

(D) min
yPRm

xb, yy
subject to AJy ě c

y ě 0

The problem is called dual due to the usage of the dual matrix AJ and the dual
variable y P Rm.

Duality Theorem
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Theorem 4. Given the primal and dual LP as above, we have xc, xy ď xb, yy for
feasible x P Rn of (P) and feasible y P Rm of (D). Moreover, we have equality for
the optimizers x˚ and y˚ of the primal resp. dual problem.

Proof. Let x P Rn and y P Rm be feasible, i.e., Ax ď b and c ď AJy. Then

xc, xy ď @
AJy, x

D “ xy,Axy ď xy, by
Let us now assume that x˚ P Rn is an optimizers of (P) that is obtained via the
simplex method. At the last step, the simplex tableau looks like this:

ˆ
1 ´vJ
0 M

˙
¨

ˆ
cJ 0 0
A Id b

˙
“

ˆpc ´ AJvqJ ´vJ ´ xv, by
˚ ˚ ˚

˙

Since x˚ is the minimizer we know that xv, by “ xx˚, cy, c ď AJv and v ě 0. Thus
v is a feasible dual variable that has the same cost as x˚.

Graph Cut as LP
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The canonical form of the MaxFlow problem is

max
fPR|E|,zPR

z

subject to

¨
˝

Id 0
div p1t ´ 1sq

´div ´p1t ´ 1sq

˛
‚

ˆ
f
z

˙
ď

¨
˝
c
0
0

˛
‚

f, z ě 0
Its dual problem is

min
yPR|E|,ℓ´,ℓ`PR|V |

xc, yy

subject to

ˆ
Id divJ ´divJ
0 p1t ´ 1sqJ ´p1t ´ 1sqJ

˙ ¨
˝

y
ℓ´
ℓ`

˛
‚ě

ˆ
0
1

˙

y, ℓ´, ℓ` ě 0

Transposing Divergence
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Note that the transposed of div is a linear mapping that maps a vector g P R|V | to
a vector divJ g P R|E|. Using the unit vector epi,jq P R|E|, we obtain

rdivJ gspi,jq “ @
divJ g, epi,jq

D “ @
g, div epi,jq

D

“
ÿ

uPV
gurdiv epi,jqsu

“
ÿ

uPV
gu

»
– ÿ

pu,vqPE
repi,jqspu,vq ´

ÿ

pv,uqPE
repi,jqspv,uq

fi
fl

“gi ´ gj (iff pi, jq P E)

In other words, we have divJ “ ´Grad.

Integer Solution of MaxFlow’s Dual
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The dual of MaxFlow becomes therefore

min
yPR|E|,ℓPR|V |

xc, yy

subject to

ˆ
Id Grad
0 ´p1t ´ 1sqJ

˙ ˆ
y
ℓ

˙
ě

ˆ
0
1

˙

y ě 0

Since the constraint matrix is totally unimodular, we obtain

min
yPZ|E|,ℓPZ|V |

xc, yy
subject to y ě ´ Gradpℓq

ℓpsq ěℓptq ` 1

y ě0

Rewriting MaxFlow’s Dual
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We make the following observations:

■ Changing ℓ by a constant value does not change y. Hence ℓptq :“ 0.

■ For ℓpsq ą 1, the cost w.r.t.
´

ℓ
ℓpsq ,

y
ℓpsq

¯
is lower. Hence ℓpsq :“ 1.

■ If there exists a node i P V with ℓpiq R t0, 1u, we can decrease the cost by
clipping ℓ at 0 resp. 1.

Hence, the dual of the MaxFlow is the MinCut:

min
ℓPB|V |

xc,maxp0,´Grad ℓqy
subject to ℓpsq “ 1 ℓptq “ 0

Ford-Fulkerson Revisited
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The MaxFlow-MinCut theorem can be seen as special case of the duality theorem
for LPs.

We saw that quadratic submodular pseudo-Boolean functions can be cast as a
graph cut problem with positive edge weights. MaxFlow, the dual problem of
MinCut, exploits this non-negativity.

The Ford-Fulkerson algorithm starts with a basic feasible solution, namely the
zero-flow.

Solving MaxFlow with the simplex method would lead to a setup where in each
step at least 1 ` |E | ´ |V | variables are 0. This is not necessarily the case for the
Ford-Fulkerson method.

Next lecture we will reformulate the general quadratic pseudo-Boolean
optimization problem in order to minimize some non-submodular energies.



Literature *

Linear Programming Simplex Method Dual LP Graph Cut as LP

IN2245 - Combinatorial Optimization in Computer Vision 7. Linear Programming – 33 / 33

Linear Program

■ Kantorovich, “A New Method of Solving Some Classes of Extremal Problems”,
1940, Dokl. Akad. Sci USSR (28), 211–214.

■ Schrijver, Combinatorial Optimization, Chapter 5.

Simplex Method

■ Dantzig, Maximization of a Linear Function of Variables subject to Linear
Inequalities, 1947.

■ Bland, New Finite Pivoting Rules for the Simplex Method, 1977, Mathematics
of OR (2), 103–107.


