Combinatorial Optimization in Computer Vision (IN2245)

Frank R. Schmidt
Csaba Domokos

Winter Semester 2015/2016

7. Linear Programming

Linear Programming

Given a network $G=(V, E, c, s, t)$, both the capacity function c and a flow f can be interpreted as vectors $c, f \in \mathbb{R}^{|E|}$. The MaxFlow can be rewritten as

$$
\begin{aligned}
& \text { max } \\
& z \\
& \text { subject to } \\
& 0 \leqslant f_{e} \leqslant c_{e} \\
& {[\operatorname{div} f]_{i}=0} \\
& {[\operatorname{div} f]_{s}=+z} \\
& {[\operatorname{div} f]_{t}=-z} \\
& z \geqslant 0
\end{aligned}
$$

Given a network $G=(V, E, c, s, t)$, both the capacity function c and a flow f can be interpreted as vectors $c, f \in \mathbb{R}^{|E|}$. The MaxFlow can be rewritten as

$$
\begin{array}{rlr}
\max & z & \\
\text { subject to } & & \text { for all } e \in E \\
0 \leqslant f_{e} \leqslant c_{e} & & \text { for all } i \in V-\{s, t\} \\
{[\operatorname{div} f]_{i}} & =0 & \\
{[\operatorname{div} f]_{s}} & =+z & \\
{[\operatorname{div} f]_{t}} & =-z & \\
z & \geqslant 0 &
\end{array}
$$

Here, $\operatorname{div}: \mathbb{R}^{|E|} \rightarrow \mathbb{R}^{|V|}$ is a linear mapping that maps information from the edges to information on the vertices.

Given a network $G=(V, E, c, s, t)$, both the capacity function c and a flow f can be interpreted as vectors $c, f \in \mathbb{R}^{|E|}$. The MaxFlow can be rewritten as

$$
\begin{array}{rlr}
\max & z & \\
\text { subject to } & 0 \leqslant f_{e} \leqslant c_{e} & \text { for all } e \in E \\
& {[\operatorname{div} f]_{i}=0} & \text { for all } i \in V-\{s, t\} \\
{[\operatorname{div} f]_{s}} & =+z & \\
{[\operatorname{div} f]_{t}} & =-z & \\
z & \geqslant 0 &
\end{array}
$$

Here, div: $\mathbb{R}^{|E|} \rightarrow \mathbb{R}^{|V|}$ is a linear mapping that maps information from the edges to information on the vertices.

Note that the objective function and the constraints are all linear.

A Linear Program (LP) is an optimization problem of a linear function with respect to linear constraints, i.e.,

$$
\begin{aligned}
& \left\{\begin{array}{c}
\min \\
\max
\end{array}\right\}_{x \in \mathbb{R}^{n}}\langle c, x\rangle \\
& \text { subject to }\left\langle a_{i}, x\right\rangle\left\{\begin{array}{l}
\leqslant \\
= \\
\geqslant
\end{array}\right\} b_{i} \quad \text { for all } i=1, \ldots, m
\end{aligned}
$$

A Linear Program (LP) is an optimization problem of a linear function with respect to linear constraints, i.e.,

$$
\begin{aligned}
& \left\{\begin{array}{l}
\min \\
\max
\end{array}\right\}_{x \in \mathbb{R}^{n}}\langle c, x\rangle \\
& \text { subject to }\left\langle a_{i}, x\right\rangle\left\{\begin{array}{l}
\leqslant \\
= \\
\geqslant
\end{array}\right\} b_{i} \quad \text { for all } i=1, \ldots, m
\end{aligned}
$$

If we use the following partial ordering on \mathbb{R}^{n} :

$$
x \leqslant y \quad \Leftrightarrow \quad x_{k} \leqslant y_{k} \quad \text { for all } k=1, \ldots, n
$$

we can simplify the notation of LPs.

An LP is in canonical form if it is of the form

$$
\begin{array}{r}
\max _{x \in \mathbb{R}^{n}}\langle c, x\rangle \\
\text { subject to } A x \leqslant b \\
x \geqslant 0
\end{array}
$$

for a constraint matrix $A \in \mathbb{R}^{m \times n}$, a constraint vector $b \in \mathbb{R}^{m}$ and a cost vector $c \in \mathbb{R}^{n}$. We have n variables and m constraints.

An LP is in canonical form if it is of the form

$$
\begin{array}{r}
\max _{x \in \mathbb{R}^{n}}\langle c, x\rangle \\
\text { subject to } A x \leqslant b \\
x \geqslant 0
\end{array}
$$

for a constraint matrix $A \in \mathbb{R}^{m \times n}$, a constraint vector $b \in \mathbb{R}^{m}$ and a cost vector $c \in \mathbb{R}^{n}$. We have n variables and m constraints.

An LP is in standard form if it is of the form

$$
\begin{gathered}
\max _{x \in \mathbb{R}^{n}}\langle c, x\rangle \\
\text { subject to } A x=b \\
x \geqslant 0
\end{gathered}
$$

LP Transformation

Every minimization problem becomes an equivalent maximization problem by replacing c with $-c$.

Every minimization problem becomes an equivalent maximization problem by replacing c with $-c$.

Note that the following equivalences can transform the constraints of an LP in purely " \leqslant " or "=" constraints:

$$
\begin{array}{lll}
\left\langle a_{i}, x\right\rangle \geqslant b_{i} & \Leftrightarrow & \left\langle-a_{i}, x\right\rangle \leqslant-b_{i} \\
\left\langle a_{i}, x\right\rangle=b_{i} & \Leftrightarrow & \left\langle+a_{i}, x\right\rangle \leqslant+b_{i}, \\
\left\langle a_{i}, x\right\rangle \leqslant b_{i} & \Leftrightarrow & \left\langle-a_{i}, x\right\rangle \leqslant-b_{i} \\
& \left.\Leftrightarrow a_{i}, x\right\rangle+s_{i}=b_{i}
\end{array}
$$

The extra variable in the last equivalence is called slack variable $s_{i} \geqslant 0$.

Every minimization problem becomes an equivalent maximization problem by replacing c with $-c$.

Note that the following equivalences can transform the constraints of an LP in purely " \leqslant " or "=" constraints:

$$
\begin{array}{lll}
\left\langle a_{i}, x\right\rangle \geqslant b_{i} & \Leftrightarrow & \left\langle-a_{i}, x\right\rangle \leqslant-b_{i} \\
\left\langle a_{i}, x\right\rangle=b_{i} & \Leftrightarrow & \left\langle+a_{i}, x\right\rangle \leqslant+b_{i}, \\
\left\langle a_{i}, x\right\rangle \leqslant b_{i} & \Leftrightarrow & \left\langle-a_{i}, x\right\rangle \leqslant-b_{i} \\
& \left.\Leftrightarrow a_{i}, x\right\rangle+s_{i}=b_{i}
\end{array}
$$

The extra variable in the last equivalence is called slack variable $s_{i} \geqslant 0$.
If a variable x_{i} is not constrained ($x_{i} \geqslant 0$), one can use two constrained variables $x_{i}^{+}, x_{i}^{-} \geqslant 0$ and replace each occurence of x_{i} with $x_{i}^{+}-x_{i}^{-}$.

Maximal Elow as LP

The canonical form of the MaxFlow problem is

$$
\begin{array}{cc}
\max _{f \in \mathbb{R}^{|E|}, z \in \mathbb{R}} \\
\text { subject to } & \left(\begin{array}{cc}
\operatorname{Id} & 0 \\
\operatorname{div} & \left(\mathbf{1}_{t}-\mathbf{1}_{s}\right) \\
-\operatorname{div} & -\left(\mathbf{1}_{t}-\mathbf{1}_{s}\right)
\end{array}\right)\binom{f}{z} \leqslant\left(\begin{array}{l}
c \\
0 \\
0
\end{array}\right) \\
f, z \geqslant 0
\end{array}
$$

The canonical form of the MaxFlow problem is

$$
\begin{array}{cc}
\max _{f \in \mathbb{R}^{|E|, z \in \mathbb{R}}} & z \\
\text { subject to } & \left(\begin{array}{cc}
\operatorname{Id} & 0 \\
\operatorname{div} & \left(\mathbf{1}_{t}-\mathbf{1}_{s}\right) \\
-\operatorname{div} & -\left(\mathbf{1}_{t}-\mathbf{1}_{s}\right)
\end{array}\right)\binom{f}{z} \leqslant\left(\begin{array}{l}
c \\
0 \\
0
\end{array}\right) \\
f, z \geqslant 0
\end{array}
$$

The standard form of the MaxFlow problem is

$$
\begin{array}{rc}
\max _{f, r \in \mathbb{R}^{|E|}, z \in \mathbb{R}} & z \\
\text { subject to } & \left(\begin{array}{ccc}
\mathrm{Id} & \mathrm{Id} & 0 \\
\operatorname{div} & 0 & \left(\mathbf{1}_{t}-\mathbf{1}_{s}\right)
\end{array}\right)\left(\begin{array}{l}
f \\
r \\
z
\end{array}\right)=\binom{c}{0} \\
f, r, z \geqslant 0
\end{array}
$$

In the following, we assume that an LP is given in its standard form and that A is of maximal rank, i.e. $\operatorname{rank}(A)=m \leqslant n$. If $x \geqslant 0$ satisfies $A x=b, x$ is called feasible.

In the following, we assume that an LP is given in its standard form and that A is of maximal rank, i.e. $\operatorname{rank}(A)=m \leqslant n$. If $x \geqslant 0$ satisfies $A x=b, x$ is called feasible.

Given the decomposition $\{1, \ldots, n\}=B+N$ with $|B|=m$, we can define A_{B} as the submatrix of A that contains only those columns a^{i} with indices $i \in B$. Since A has maximal rank, we can select B such that $A_{B} \in \mathbb{R}^{m \times m}$ has maximal rank and we can compute

$$
x_{B}=A_{B}^{-1} b
$$

In the following, we assume that an LP is given in its standard form and that A is of maximal rank, i.e. $\operatorname{rank}(A)=m \leqslant n$. If $x \geqslant 0$ satisfies $A x=b, x$ is called feasible.

Given the decomposition $\{1, \ldots, n\}=B+N$ with $|B|=m$, we can define A_{B} as the submatrix of A that contains only those columns a^{i} with indices $i \in B$. Since A has maximal rank, we can select B such that $A_{B} \in \mathbb{R}^{m \times m}$ has maximal rank and we can compute

$$
x_{B}=A_{B}^{-1} b
$$

x_{B} only defines those entries of x whose indices are in B. Filling the rest of x with zeros $\left(x_{N}=0\right)$, we obtain a feasible x. Feasible x that are created in this way ($x=x_{B}+x_{N}$) are called basic feasible solutions.

Theorem 1. If there is a feasible x, there is a basic feasible solution x^{\prime}.

Proof.

Theorem 1. If there is a feasible x, there is a basic feasible solution x^{\prime}.

Proof. Without loss of generality, let us assume $b=\sum_{i=1}^{k} x_{i} a^{i}$ with $x_{i}>0$.

Theorem 1. If there is a feasible x, there is a basic feasible solution x^{\prime}.
Proof. Without loss of generality, let us assume $b=\sum_{i=1}^{k} x_{i} a^{i}$ with $x_{i}>0$.
Case 1: The $k a_{i}$ are linearly independent.
$k=m$ proves the theorem. Otherwise, $m-k$ of the remaining vectors form a base and x is a basic feasible solution with respect to these indices.

Theorem 1. If there is a feasible x, there is a basic feasible solution x^{\prime}.
Proof. Without loss of generality, let us assume $b=\sum_{i=1}^{k} x_{i} a^{i}$ with $x_{i}>0$.
Case 1: The $k a_{i}$ are linearly independent.
$k=m$ proves the theorem. Otherwise, $m-k$ of the remaining vectors form a base and x is a basic feasible solution with respect to these indices.
Case 2: The $k a_{i}$ are linearly dependent.
We have $0=\sum_{i=1}^{k} \lambda_{i} a^{i}$ with at least one $\lambda_{i}>0$ and thus for all $\epsilon>0$

$$
b=\sum_{i=1}^{k}\left(x_{i}-\epsilon \lambda_{i}\right) a_{i}
$$

Theorem 1. If there is a feasible x, there is a basic feasible solution x^{\prime}.
Proof. Without loss of generality, let us assume $b=\sum_{i=1}^{k} x_{i} a^{i}$ with $x_{i}>0$.
Case 1: The $k a_{i}$ are linearly independent.
$k=m$ proves the theorem. Otherwise, $m-k$ of the remaining vectors form a base and x is a basic feasible solution with respect to these indices.
Case 2: The $k a_{i}$ are linearly dependent.
We have $0=\sum_{i=1}^{k} \lambda_{i} a^{i}$ with at least one $\lambda_{i}>0$ and thus for all $\epsilon>0$

$$
b=\sum_{i=1}^{k}\left(x_{i}-\epsilon \lambda_{i}\right) a_{i}
$$

Choosing $\epsilon=\min \left\{\left.\frac{x_{i}}{\lambda_{i}} \right\rvert\, \lambda_{i}>0\right\}$ creates a feasible solution $x^{\prime}=x-\epsilon \lambda$ that uses at most $k-1$ positive variables. Iterating this step leads eventually to the $1^{\text {st }}$ case of linear independence.

Theorem 2. If x^{*} is feasible, there is an optimal basic feasible solution x^{\prime}.

Proof.

What Fundamental Theorem of LP (Part 2)

Theorem 2. If x^{*} is feasible, there is an optimal basic feasible solution x^{\prime}.
Proof. Without loss of generality, let us assume $b=\sum_{i=1}^{k} x_{i}^{*} a^{i}$ with $x_{i}^{*}>0$.

Ufs Fundamental Theorem of LP (Part 2)

Theorem 2. If x^{*} is feasible, there is an optimal basic feasible solution x^{\prime}.
Proof. Without loss of generality, let us assume $b=\sum_{i=1}^{k} x_{i}^{*} a^{i}$ with $x_{i}^{*}>0$.
Case 1: The $k a_{i}$ are linearly independent. (Analogously as before)

Tht Fundamental Theorem of LP (Part 2)

Theorem 2. If x^{*} is feasible, there is an optimal basic feasible solution x^{\prime}.
Proof. Without loss of generality, let us assume $b=\sum_{i=1}^{k} x_{i}^{*} a^{i}$ with $x_{i}^{*}>0$.
Case 1: The $k a_{i}$ are linearly independent. (Analogously as before)
Case 2: The $k a_{i}$ are linearly dependent.
Create analogously as before $x^{\prime}=x^{*}-\epsilon \lambda$ and we have

$$
\left\langle c, x^{\prime}\right\rangle=\left\langle c, x^{*}\right\rangle-\epsilon\langle c, \lambda\rangle
$$

Utis Fundamental Theorem of LP (Part 2)

Theorem 2. If x^{*} is feasible, there is an optimal basic feasible solution x^{\prime}.
Proof. Without loss of generality, let us assume $b=\sum_{i=1}^{k} x_{i}^{*} a^{i}$ with $x_{i}^{*}>0$.
Case 1: The $k a_{i}$ are linearly independent. (Analogously as before)
Case 2: The $k a_{i}$ are linearly dependent.
Create analogously as before $x^{\prime}=x^{*}-\epsilon \lambda$ and we have

$$
\left\langle c, x^{\prime}\right\rangle=\left\langle c, x^{*}\right\rangle-\epsilon\langle c, \lambda\rangle
$$

If $\langle c, \lambda\rangle \neq 0$, we could improve x^{*} for small ϵ, which contradicts the optimality of x^{*}.

Theorem 2. If x^{*} is feasible, there is an optimal basic feasible solution x^{\prime}.

Proof. Without loss of generality, let us assume $b=\sum_{i=1}^{k} x_{i}^{*} a^{i}$ with $x_{i}^{*}>0$.
Case 1: The $k a_{i}$ are linearly independent. (Analogously as before)
Case 2: The $k a_{i}$ are linearly dependent.
Create analogously as before $x^{\prime}=x^{*}-\epsilon \lambda$ and we have

$$
\left\langle c, x^{\prime}\right\rangle=\left\langle c, x^{*}\right\rangle-\epsilon\langle c, \lambda\rangle
$$

If $\langle c, \lambda\rangle \neq 0$, we could improve x^{*} for small ϵ, which contradicts the optimality of x^{*}.
Thus, $\langle c, \lambda\rangle=0$, which proves the optimality of $x^{\prime} . x^{\prime}$ is a feasible solution that uses at most $k-1$ positive variables. Iterating this step eventually leads to the case of linear independence and thus, proves the theorem.

Simplex Method

We saw that it is enough to restrict ourselves to basic feasible solutions.

We saw that it is enough to restrict ourselves to basic feasible solutions.
Since a basic feasible solution only depends on the choice $B \subset\{1, \ldots, n\}$, we have no more than $\binom{n}{m}$ basic feasible solutions.

We saw that it is enough to restrict ourselves to basic feasible solutions.
Since a basic feasible solution only depends on the choice $B \subset\{1, \ldots, n\}$, we have no more than $\binom{n}{m}$ basic feasible solutions.

The Simplex method works as following

1. Find a basic feasible solution x

We saw that it is enough to restrict ourselves to basic feasible solutions.
Since a basic feasible solution only depends on the choice $B \subset\{1, \ldots, n\}$, we have no more than $\binom{n}{m}$ basic feasible solutions.

The Simplex method works as following

1. Find a basic feasible solution x
2. If $\langle c, x\rangle$ is not optimal, find a better basic feasible solution

We saw that it is enough to restrict ourselves to basic feasible solutions.
Since a basic feasible solution only depends on the choice $B \subset\{1, \ldots, n\}$, we have no more than $\binom{n}{m}$ basic feasible solutions.

The Simplex method works as following

1. Find a basic feasible solution x
2. If $\langle c, x\rangle$ is not optimal, find a better basic feasible solution
3. Iterate until convergence.

We saw that it is enough to restrict ourselves to basic feasible solutions.
Since a basic feasible solution only depends on the choice $B \subset\{1, \ldots, n\}$, we have no more than $\binom{n}{m}$ basic feasible solutions.

The Simplex method works as following

1. Find a basic feasible solution x
2. If $\langle c, x\rangle$ is not optimal, find a better basic feasible solution
3. Iterate until convergence.

The main challenge is to perform Step 2 as efficiently as possible.

We saw that it is enough to restrict ourselves to basic feasible solutions.
Since a basic feasible solution only depends on the choice $B \subset\{1, \ldots, n\}$, we have no more than $\binom{n}{m}$ basic feasible solutions.

The Simplex method works as following

1. Find a basic feasible solution x
2. If $\langle c, x\rangle$ is not optimal, find a better basic feasible solution
3. Iterate until convergence.

The main challenge is to perform Step 2 as efficiently as possible.
There are certain LPs for which Step 1 is difficult. For the problems we will consider, this step will be very easy.

Let us assume that we have a basic feasible solution $x \in \mathbb{R}^{n}$ with its basic set B. This means $b=\sum_{i \in B} x_{i} a_{i}$.

Let us assume that we have a basic feasible solution $x \in \mathbb{R}^{n}$ with its basic set B. This means $b=\sum_{i \in B} x_{i} a_{i}$.

Since the $\left(a_{i}\right)_{i \in B}$ form a base of \mathbb{R}^{m}, we also have

$$
a_{j}=\sum_{i \in B} y_{i j} a_{i} \quad \text { for all } j \notin B
$$

for certain $y_{i j} \in \mathbb{R}$.

Let us assume that we have a basic feasible solution $x \in \mathbb{R}^{n}$ with its basic set B. This means $b=\sum_{i \in B} x_{i} a_{i}$.

Since the $\left(a_{i}\right)_{i \in B}$ form a base of \mathbb{R}^{m}, we also have

$$
a_{j}=\sum_{i \in B} y_{i j} a_{i} \quad \text { for all } j \notin B
$$

for certain $y_{i j} \in \mathbb{R}$.
For a small $\epsilon \geqslant 0$, the point $x_{\epsilon}=\epsilon a_{j}+\sum_{i \in B}\left(x_{i}-\epsilon y_{i j}\right) a_{i}$ is feasible, but not a basic feasible solution.

Let us assume that we have a basic feasible solution $x \in \mathbb{R}^{n}$ with its basic set B. This means $b=\sum_{i \in B} x_{i} a_{i}$.

Since the $\left(a_{i}\right)_{i \in B}$ form a base of \mathbb{R}^{m}, we also have

$$
a_{j}=\sum_{i \in B} y_{i j} a_{i} \quad \text { for all } j \notin B
$$

for certain $y_{i j} \in \mathbb{R}$.
For a small $\epsilon \geqslant 0$, the point $x_{\epsilon}=\epsilon a_{j}+\sum_{i \in B}\left(x_{i}-\epsilon y_{i j}\right) a_{i}$ is feasible, but not a basic feasible solution.

For $\epsilon=\min _{k}\left\{\left.\frac{x_{k}}{y_{k j}} \right\rvert\, y_{k j}>0\right\}, x_{\epsilon}$ becomes a basic feasible solution w.r.t. the basic set $B-\{j\}+\{k\}$ where k is the minimizing index that defines ϵ.

Linear Programming Simplex Method
The pivot operation changes B by replacing one element with an element that is not in B. Now, we want to address, which element we should remove in order to improve the cost function with respect to the basic feasible solution that is associated with B.

thit Choosing a Good Pivot Operation

The pivot operation changes B by replacing one element with an element that is not in B. Now, we want to address, which element we should remove in order to improve the cost function with respect to the basic feasible solution that is associated with B.

Given a basic set B we can rewrite the constraint $A y=b$ as

$$
\left(\begin{array}{ll}
\operatorname{Id} & A_{B}^{-1} A_{N}
\end{array}\right)\binom{y_{B}}{y_{N}}=A_{B}^{-1} b
$$

and the cost function becomes for $y_{N} \neq 0$

$$
\begin{aligned}
\langle c, y\rangle= & \left\langle y_{N}, c_{N}\right\rangle+\left\langle A_{B}^{-1}\left(b-A_{N} y_{N}\right), c_{B}\right\rangle \\
& \left\langle x_{B}, c_{B}\right\rangle+\left\langle c_{N}-A_{N}^{\top} A_{B}^{-\top} c_{B}, y_{N}\right\rangle
\end{aligned}
$$

Uhit Choosing a Good Pivot Operation

The pivot operation changes B by replacing one element with an element that is not in B. Now, we want to address, which element we should remove in order to improve the cost function with respect to the basic feasible solution that is associated with B.

Given a basic set B we can rewrite the constraint $A y=b$ as

$$
\left(\begin{array}{ll}
\operatorname{Id} & A_{B}^{-1} A_{N}
\end{array}\right)\binom{y_{B}}{y_{N}}=A_{B}^{-1} b
$$

and the cost function becomes for $y_{N} \neq 0$

$$
\begin{aligned}
\langle c, y\rangle= & \left\langle y_{N}, c_{N}\right\rangle+\left\langle A_{B}^{-1}\left(b-A_{N} y_{N}\right), c_{B}\right\rangle \\
& \left\langle x_{B}, c_{B}\right\rangle+\left\langle c_{N}-A_{N}^{\top} A_{B}^{-\top} c_{B}, y_{N}\right\rangle
\end{aligned}
$$

We can improve the solution iff $c_{N}-A_{N}^{\top} A_{B}^{-\top} c_{B}$ has positive entries.

The theory that we studied so far explored everything we need to know in order to solve an LP.

The theory that we studied so far explored everything we need to know in order to solve an LP.

Given a basic feasible solution defined by B, we know whether it is optimal or not. If it is not optimal, we know how to change B in order to get an improved solution. In addition, we know how x_{B} will change if we change B.

The theory that we studied so far explored everything we need to know in order to solve an LP.

Given a basic feasible solution defined by B, we know whether it is optimal or not. If it is not optimal, we know how to change B in order to get an improved solution. In addition, we know how x_{B} will change if we change B.

The actual Simplex Algorithm that we discuss now combines this knowledge in order to reduce the computational complexity. After all, we do not want to recompute A_{B}^{-1} in every iteration.

The theory that we studied so far explored everything we need to know in order to solve an LP.

Given a basic feasible solution defined by B, we know whether it is optimal or not. If it is not optimal, we know how to change B in order to get an improved solution. In addition, we know how x_{B} will change if we change B.

The actual Simplex Algorithm that we discuss now combines this knowledge in order to reduce the computational complexity. After all, we do not want to recompute A_{B}^{-1} in every iteration.

To this end, we will store an LP that is equivalent to the original LP. This representation is called the Simplex Tableau.

Given a basic feasible solution x_{B} and its basic set B, the simplex tableau is a $(m+1) \times(n+1)$ matrix of the following form

$$
\left(\begin{array}{cc|c}
0 & c_{N}^{\top}-c_{B}^{\top} A_{B}^{-1} A_{N} & -\left\langle c_{B}, x_{B}\right\rangle \\
\hline \operatorname{Id} & A_{B}^{-1} A_{N} & A_{B}^{-1} b
\end{array}\right)
$$

Given a basic feasible solution x_{B} and its basic set B, the simplex tableau is a $(m+1) \times(n+1)$ matrix of the following form

$$
\left(\begin{array}{cc|c}
0 & c_{N}^{\top}-c_{B}^{\top} A_{B}^{-1} A_{N} & -\left\langle c_{B}, x_{B}\right\rangle \\
\hline \operatorname{Id} & A_{B}^{-1} A_{N} & A_{B}^{-1} b
\end{array}\right)
$$

If the first row has a positive entry (at position j), we can improve the solution by adding j to B. Select $i \in \operatorname{argmin}\left\{\left.\frac{\left(A_{B}^{-1} b\right)_{i}}{\left(A_{B}^{-1} a^{j}\right)_{i}} \right\rvert\,\left(A_{B}^{-1} a^{j}\right)_{i}>0\right\}$ and pivot the $j^{\text {th }}$ column of the tableau, i.e, perform Gaussian elimination until the $j^{\text {th }}$ column is the $(i+1)^{\text {th }}$ unit vector.

Given a basic feasible solution x_{B} and its basic set B, the simplex tableau is a $(m+1) \times(n+1)$ matrix of the following form

$$
\left(\begin{array}{cc|c}
0 & c_{N}^{\top}-c_{B}^{\top} A_{B}^{-1} A_{N} & -\left\langle c_{B}, x_{B}\right\rangle \\
\hline \operatorname{Id} & A_{B}^{-1} A_{N} & A_{B}^{-1} b
\end{array}\right)
$$

If the first row has a positive entry (at position j), we can improve the solution by adding j to B. Select $i \in \operatorname{argmin}\left\{\left.\frac{\left(A_{B}^{-1} b\right)_{i}}{\left(A_{B}^{-1} a^{j}\right)_{i}} \right\rvert\,\left(A_{B}^{-1} a^{j}\right)_{i}>0\right\}$ and pivot the $j^{\text {th }}$ column of the tableau, i.e, perform Gaussian elimination until the $j^{\text {th }}$ column is the $(i+1)^{\text {th }}$ unit vector.

This operation only changes the $i^{\text {th }}$ column among the first m columns. In particular, one can show that we obtain a tableau with respect to $B-i+j$.

The pivoting operation can be summarized in the following form: At each step, there exists a vector $v \in \mathbb{R}^{m}$ such that the tableau is representable as the following product

$$
\begin{aligned}
\left(\begin{array}{cc}
1 & -v^{\top} \\
\hline 0 & A_{B}^{-1}
\end{array}\right) \cdot\left(\begin{array}{cc}
c^{\top} & 0 \\
A & b
\end{array}\right) & =\left(\begin{array}{cc}
1 & -v^{\top} \\
\hline 0 & A_{B}^{-1}
\end{array}\right) \cdot\left(\begin{array}{ccc}
c_{B}^{\top} & c_{N}^{\top} & 0 \\
A_{B} & A_{N} & b
\end{array}\right) \\
& =\left(\begin{array}{cc|c}
0 & c_{N}^{\top}-c_{B}^{\top} A_{B}^{-1} A_{N} & -\left\langle c_{B}, x_{B}\right\rangle \\
\hline \operatorname{Id} & A_{B}^{-1} A_{N} & A_{B}^{-1} b
\end{array}\right)
\end{aligned}
$$

The pivoting operation can be summarized in the following form: At each step, there exists a vector $v \in \mathbb{R}^{m}$ such that the tableau is representable as the following product

$$
\begin{aligned}
\left(\begin{array}{cc}
1 & -v^{\top} \\
\hline 0 & A_{B}^{-1}
\end{array}\right) \cdot\left(\begin{array}{cc}
c^{\top} & 0 \\
A & b
\end{array}\right) & =\left(\begin{array}{cc}
1 & -v^{\top} \\
\hline 0 & A_{B}^{-1}
\end{array}\right) \cdot\left(\begin{array}{ccc}
c_{B}^{\top} & c_{N}^{\top} & 0 \\
A_{B} & A_{N} & b
\end{array}\right) \\
& =\left(\begin{array}{cc|c}
0 & c_{N}^{\top}-c_{B}^{\top} A_{B}^{-1} A_{N} & -\left\langle c_{B}, x_{B}\right\rangle \\
\hline \mathrm{Id} & A_{B}^{-1} A_{N} & A_{B}^{-1} b
\end{array}\right)
\end{aligned}
$$

Note that the first equality is only true after reordering the columns.

The pivoting operation can be summarized in the following form: At each step, there exists a vector $v \in \mathbb{R}^{m}$ such that the tableau is representable as the following product

$$
\begin{aligned}
\left(\begin{array}{cc}
1 & -v^{\top} \\
\hline 0 & A_{B}^{-1}
\end{array}\right) \cdot\left(\begin{array}{cc}
c^{\top} & 0 \\
A & b
\end{array}\right) & =\left(\begin{array}{cc}
1 & -v^{\top} \\
\hline 0 & A_{B}^{-1}
\end{array}\right) \cdot\left(\begin{array}{ccc}
c_{B}^{\top} & c_{N}^{\top} & 0 \\
A_{B} & A_{N} & b
\end{array}\right) \\
& =\left(\begin{array}{cc|c}
0 & c_{N}^{\top}-c_{B}^{\top} A_{B}^{-1} A_{N} & -\left\langle c_{B}, x_{B}\right\rangle \\
\hline \mathrm{Id} & A_{B}^{-1} A_{N} & A_{B}^{-1} b
\end{array}\right)
\end{aligned}
$$

Note that the first equality is only true after reordering the columns.
It is easy to check that $v^{\top}=c_{B}^{\top} A_{B}^{-1}$.

Each iteration takes $\mathcal{O}(m n)$ steps and there are at most $\binom{n}{m}$ basic feasible solutions. Therefore, the running time is finite, but may be exponential.

Each iteration takes $\mathcal{O}(m n)$ steps and there are at most $\binom{n}{m}$ basic feasible solutions. Therefore, the running time is finite, but may be exponential.

There are methods that can solve the problem in polynomial time, but are numerical less stable than the simplex method. In practice, the simplex is quite fast and does not visit every basic feasible solution.

Each iteration takes $\mathcal{O}(m n)$ steps and there are at most $\binom{n}{m}$ basic feasible solutions. Therefore, the running time is finite, but may be exponential.

There are methods that can solve the problem in polynomial time, but are numerical less stable than the simplex method. In practice, the simplex is quite fast and does not visit every basic feasible solution.

Nonetheless, there is an LP for which the simplex method might visit every of its 2^{n} basic feasible solutions. For $0<\epsilon<\frac{1}{2}$ this is such an example

$$
\begin{array}{rc}
\max _{x \in \mathbb{R}^{n}} & x_{n} \\
\text { subject to } & 0 \leqslant x_{1} \leqslant 1 \\
& \epsilon x_{i} \leqslant x_{i+1} \leqslant 1-\epsilon x_{i} \quad \text { for all } i=1, \ldots, n-1
\end{array}
$$

If we want to minimize pseudo-Boolean functions, we want to add the constraint $x_{i} \in \mathbb{B}$ for each variable. This is equivalen to the following two constraints

$$
0 \leqslant x_{i} \leqslant 1 \quad x_{i} \in \mathbb{Z}
$$

The first constraint fits well into the LP framework.

If we want to minimize pseudo-Boolean functions, we want to add the constraint $x_{i} \in \mathbb{B}$ for each variable. This is equivalen to the following two constraints

$$
0 \leqslant x_{i} \leqslant 1 \quad x_{i} \in \mathbb{Z}
$$

The first constraint fits well into the LP framework.
An Integer Linear Program (ILP) is an LP for which we add an integer constraint to the variables. Minimizing an ILP is NP hard.

If we want to minimize pseudo-Boolean functions, we want to add the constraint $x_{i} \in \mathbb{B}$ for each variable. This is equivalen to the following two constraints

$$
0 \leqslant x_{i} \leqslant 1 \quad x_{i} \in \mathbb{Z}
$$

The first constraint fits well into the LP framework.
An Integer Linear Program (ILP) is an LP for which we add an integer constraint to the variables. Minimizing an ILP is NP hard.

Nonetheless, some well behaving ILPs are solvable using the LP framework

If we want to minimize pseudo-Boolean functions, we want to add the constraint $x_{i} \in \mathbb{B}$ for each variable. This is equivalen to the following two constraints

$$
0 \leqslant x_{i} \leqslant 1 \quad x_{i} \in \mathbb{Z}
$$

The first constraint fits well into the LP framework.
An Integer Linear Program (ILP) is an LP for which we add an integer constraint to the variables. Minimizing an ILP is NP hard.

Nonetheless, some well behaving ILPs are solvable using the LP framework
■ Dropping the integer constraints on the variable leads to an LP

If we want to minimize pseudo-Boolean functions, we want to add the constraint $x_{i} \in \mathbb{B}$ for each variable. This is equivalen to the following two constraints

$$
0 \leqslant x_{i} \leqslant 1 \quad x_{i} \in \mathbb{Z}
$$

The first constraint fits well into the LP framework.
An Integer Linear Program (ILP) is an LP for which we add an integer constraint to the variables. Minimizing an ILP is NP hard.

Nonetheless, some well behaving ILPs are solvable using the LP framework

- Dropping the integer constraints on the variable leads to an LP

■ This LP might have an optimizer $x \in \mathbb{R}^{n}$

If we want to minimize pseudo-Boolean functions, we want to add the constraint $x_{i} \in \mathbb{B}$ for each variable. This is equivalen to the following two constraints

$$
0 \leqslant x_{i} \leqslant 1 \quad x_{i} \in \mathbb{Z}
$$

The first constraint fits well into the LP framework.
An Integer Linear Program (ILP) is an LP for which we add an integer constraint to the variables. Minimizing an ILP is NP hard.

Nonetheless, some well behaving ILPs are solvable using the LP framework

- Dropping the integer constraints on the variable leads to an LP

■ This LP might have an optimizer $x \in \mathbb{R}^{n}$
■ If $x \in \mathbb{Z}^{n}$, the ILP is solved by x.

Let us assume that we have the following maximization problem

$$
\begin{array}{r}
\max _{x \in \mathbb{Z}^{n}}\langle c, x\rangle \\
\text { subject to } A x=b \\
x \geqslant 0
\end{array}
$$

with $b \in \mathbb{Z}^{n}$ and $A \in \mathbb{Z}^{m \times n}$.

Let us assume that we have the following maximization problem

$$
\begin{array}{r}
\max _{x \in \mathbb{Z}^{n}}\langle c, x\rangle \\
\text { subject to } A x=b \\
x \geqslant 0
\end{array}
$$

with $b \in \mathbb{Z}^{n}$ and $A \in \mathbb{Z}^{m \times n}$.
Let us assume that the LP that ignores the integer constraint will find a solution $x=x_{B}+x_{N}$ with

$$
x_{B}=A_{B}^{-1} b \quad x_{N}=0
$$

Since $b \in \mathbb{Z}^{m}$, the ILP would be solved if $A_{B}^{-1} \in \mathbb{Z}^{m \times n}$. While this is not true in general, we can classify those matrices that give rise to ineger solutions.

A matrix $A \in \mathbb{R}^{m \times n}$ is called totally unimodular if the determinant of any quadratic submatrix is either $-1,0$ or +1 .

A matrix $A \in \mathbb{R}^{m \times n}$ is called totally unimodular if the determinant of any quadratic submatrix is either $-1,0$ or +1 .

Lemma 1. If $A \in \mathbb{Z}^{m \times n}$ is totally unimodular, we have $A_{B}^{-1} \in \mathbb{Z}^{m \times n}$ for any basic set $B \subset\{1, \ldots, n\}$.

A matrix $A \in \mathbb{R}^{m \times n}$ is called totally unimodular if the determinant of any quadratic submatrix is either $-1,0$ or +1 .

Lemma 1. If $A \in \mathbb{Z}^{m \times n}$ is totally unimodular, we have $A_{B}^{-1} \in \mathbb{Z}^{m \times n}$ for any basic set $B \subset\{1, \ldots, n\}$.

Proof. Let $M \in \mathbb{R}^{m \times m}$ be an arbitrary invertible matrix. Then we denote by $m_{i, j}^{\#}=\operatorname{det}\left(M_{j, i}\right)$ the determinant of the submatrix of M after removing the $j^{\text {th }}$ row and the $i^{\text {th }}$ column of M. This creates a new matrix $M^{\#}$ and for the product of these matrices we have $M M^{\#}=\operatorname{det}(M) \cdot I d$.

A matrix $A \in \mathbb{R}^{m \times n}$ is called totally unimodular if the determinant of any quadratic submatrix is either $-1,0$ or +1 .

Lemma 1. If $A \in \mathbb{Z}^{m \times n}$ is totally unimodular, we have $A_{B}^{-1} \in \mathbb{Z}^{m \times n}$ for any basic set $B \subset\{1, \ldots, n\}$.

Proof. Let $M \in \mathbb{R}^{m \times m}$ be an arbitrary invertible matrix. Then we denote by $m_{i, j}^{\#}=\operatorname{det}\left(M_{j, i}\right)$ the determinant of the submatrix of M after removing the $j^{\text {th }}$ row and the $i^{\text {th }}$ column of M. This creates a new matrix $M^{\#}$ and for the product of these matrices we have $M M^{\#}=\operatorname{det}(M) \cdot I d$.
In other words, $A_{B}^{-1}= \pm A_{B}^{\#}$, which proves the lemma.

If $A \in \mathbb{R}^{m \times n}$ is totally unimodular, we have $A \in\{-1,0,1\}^{m \times n}$.

Thit Classification of Total Unimodularity

If $A \in \mathbb{R}^{m \times n}$ is totally unimodular, we have $A \in\{-1,0,1\}^{m \times n}$.
Given $A \in\{-1,0,1\}^{m \times n}$, there is a very useful classification by Ghouila-Houri of totally unimodular matrices:

Theorem 3. Iff for every selection of rows $a^{i}, i \in R$, there is a seperation $R=R^{+}+R^{-}$such that $\sum_{i \in R^{+}} a^{i}-\sum_{i \in R^{-}} a^{i} \in\{-1,0,1\}^{n}$, the matrix A is totally unimodular.

Lhit Classification of Total Unimodularity

If $A \in \mathbb{R}^{m \times n}$ is totally unimodular, we have $A \in\{-1,0,1\}^{m \times n}$.
Given $A \in\{-1,0,1\}^{m \times n}$, there is a very useful classification by Ghouila-Houri of totally unimodular matrices:

Theorem 3. Iff for every selection of rows $a^{i}, i \in R$, there is a seperation $R=R^{+}+R^{-}$such that $\sum_{i \in R^{+}} a^{i}-\sum_{i \in R^{-}} a^{i} \in\{-1,0,1\}^{n}$, the matrix A is totally unimodular.

The matrix div: $\mathbb{R}^{|E|} \rightarrow \mathbb{R}^{|E|}$ that we used for the maximal flow description is totally unimodular.

Uht Classification of Total Unimodularity

If $A \in \mathbb{R}^{m \times n}$ is totally unimodular, we have $A \in\{-1,0,1\}^{m \times n}$.
Given $A \in\{-1,0,1\}^{m \times n}$, there is a very useful classification by Ghouila-Houri of totally unimodular matrices:

Theorem 3. Iff for every selection of rows $a^{i}, i \in R$, there is a seperation $R=R^{+}+R^{-}$such that $\sum_{i \in R^{+}} a^{i}-\sum_{i \in R^{-}} a^{i} \in\{-1,0,1\}^{n}$, the matrix A is totally unimodular.

The matrix div: $\mathbb{R}^{|E|} \rightarrow \mathbb{R}^{|E|}$ that we used for the maximal flow description is totally unimodular.

If a matrix A is totally unimodular, $\left(\begin{array}{ll}A & \mathrm{Id}\end{array}\right)$ is totally unimodular.

Utit Classification of Total Unimodularity

If $A \in \mathbb{R}^{m \times n}$ is totally unimodular, we have $A \in\{-1,0,1\}^{m \times n}$.
Given $A \in\{-1,0,1\}^{m \times n}$, there is a very useful classification by Ghouila-Houri of totally unimodular matrices:

Theorem 3. Iff for every selection of rows $a^{i}, i \in R$, there is a seperation $R=R^{+}+R^{-}$such that $\sum_{i \in R^{+}} a^{i}-\sum_{i \in R^{-}} a^{i} \in\{-1,0,1\}^{n}$, the matrix A is totally unimodular.

The matrix div: $\mathbb{R}^{|E|} \rightarrow \mathbb{R}^{|E|}$ that we used for the maximal flow description is totally unimodular.

If a matrix A is totally unimodular, $\left(\begin{array}{ll}A & \mathrm{Id}\end{array}\right)$ is totally unimodular.
If a matrix A is totally unimodular, A^{\top} is totally unimodular.

Dual LP

Given a primal LP in canonical form
(P)

$$
\begin{gathered}
\max _{x \in \mathbb{R}^{n}}\langle c, x\rangle \\
\text { subject to } A x \leqslant b \\
x \geqslant 0
\end{gathered}
$$

its dual LP is
(D)

$$
\begin{gathered}
\min _{x \in \mathbb{R}^{m}}\langle b, y\rangle \\
\text { subject to } A^{\top} y \geqslant c \\
y \geqslant 0
\end{gathered}
$$

Given a primal LP in canonical form
(P)

$$
\begin{gathered}
\max _{x \in \mathbb{R}^{n}}\langle c, x\rangle \\
\text { subject to } A x \leqslant b \\
x \geqslant 0
\end{gathered}
$$

its dual LP is
(D)

$$
\begin{gathered}
\min _{x \in \mathbb{R}^{m}}\langle b, y\rangle \\
\text { subject to } A^{\top} y \geqslant c \\
y \geqslant 0
\end{gathered}
$$

The problem is called dual due to the usage of the dual matrix A^{\top} and the dual variable $y \in \mathbb{R}^{m}$.

Theorem 4. Given the primal and dual $L P$ as above, we have $\langle c, x\rangle \leqslant\langle b, y\rangle$ for feasible $x \in \mathbb{R}^{n}$ of (P) and feasible $y \in \mathbb{R}^{m}$ of (D). Moreover, we have equality for the optimizers x^{*} and y^{*} of the primal resp. dual problem.

Proof.

Theorem 4. Given the primal and dual $L P$ as above, we have $\langle c, x\rangle \leqslant\langle b, y\rangle$ for feasible $x \in \mathbb{R}^{n}$ of (P) and feasible $y \in \mathbb{R}^{m}$ of (D). Moreover, we have equality for the optimizers x^{*} and y^{*} of the primal resp. dual problem.

Proof. Let $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{n}$ be feasible, i.e., $A x \leqslant b$ and $c \leqslant A^{\top} y$. Then

$$
\langle c, x\rangle \leqslant\left\langle A^{\top} y, x\right\rangle=\langle y, A x\rangle \leqslant\langle y, b\rangle
$$

Theorem 4. Given the primal and dual $L P$ as above, we have $\langle c, x\rangle \leqslant\langle b, y\rangle$ for feasible $x \in \mathbb{R}^{n}$ of (P) and feasible $y \in \mathbb{R}^{m}$ of (D). Moreover, we have equality for the optimizers x^{*} and y^{*} of the primal resp. dual problem.

Proof. Let $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{n}$ be feasible, i.e., $A x \leqslant b$ and $c \leqslant A^{\top} y$. Then

$$
\langle c, x\rangle \leqslant\left\langle A^{\top} y, x\right\rangle=\langle y, A x\rangle \leqslant\langle y, b\rangle
$$

Let us now assume that $x^{*} \in \mathbb{R}^{n}$ is an optimizers of (P) that is obtained via the simplex method. At the last step, the simplex tableau looks like this:

$$
\left(\begin{array}{cc}
1 & -v^{\top} \\
0 & M
\end{array}\right) \cdot\left(\begin{array}{ccc}
c^{\top} & 0 & 0 \\
A & \operatorname{Id} & b
\end{array}\right)=\left(\begin{array}{ccc}
\left(c-A^{\top} v\right)^{\top} & -v^{\top} & -\langle v, b\rangle \\
* & * & *
\end{array}\right)
$$

Theorem 4. Given the primal and dual $L P$ as above, we have $\langle c, x\rangle \leqslant\langle b, y\rangle$ for feasible $x \in \mathbb{R}^{n}$ of (P) and feasible $y \in \mathbb{R}^{m}$ of (D). Moreover, we have equality for the optimizers x^{*} and y^{*} of the primal resp. dual problem.

Proof. Let $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{n}$ be feasible, i.e., $A x \leqslant b$ and $c \leqslant A^{\top} y$. Then

$$
\langle c, x\rangle \leqslant\left\langle A^{\top} y, x\right\rangle=\langle y, A x\rangle \leqslant\langle y, b\rangle
$$

Let us now assume that $x^{*} \in \mathbb{R}^{n}$ is an optimizers of (P) that is obtained via the simplex method. At the last step, the simplex tableau looks like this:

$$
\left(\begin{array}{cc}
1 & -v^{\top} \\
0 & M
\end{array}\right) \cdot\left(\begin{array}{ccc}
c^{\top} & 0 & 0 \\
A & \mathrm{Id} & b
\end{array}\right)=\left(\begin{array}{ccc}
\left(c-A^{\top} v\right)^{\top} & -v^{\top} & -\langle v, b\rangle \\
* & * & *
\end{array}\right)
$$

Since x^{*} is the minimizer we know that $\langle v, b\rangle=\left\langle x^{*}, c\right\rangle, c \leqslant A^{\top} v$ and $v \geqslant 0$. Thus v is a feasible dual variable that has the same cost as x^{*}.

Graph Cut as LP

Maximal Flow and its Dual

The canonical form of the MaxFlow problem is

$$
\begin{array}{cc}
\max _{f \in \mathbb{R}^{|E|}, z \in \mathbb{R}} & z \\
\text { subject to } & \left(\begin{array}{cc}
\operatorname{Id} & 0 \\
\operatorname{div} & \left(\mathbf{1}_{t}-\mathbf{1}_{s}\right) \\
-\operatorname{div} & -\left(\mathbf{1}_{t}-\mathbf{1}_{s}\right)
\end{array}\right)\binom{f}{z} \leqslant\left(\begin{array}{l}
c \\
0 \\
0
\end{array}\right) \\
f, z \geqslant 0
\end{array}
$$

The canonical form of the MaxFlow problem is

$$
\begin{aligned}
& \max _{f \in \mathbb{R}^{|E|}, z \in \mathbb{R}} \quad z \\
& \text { subject to } \quad\left(\begin{array}{cc}
\operatorname{Id} & 0 \\
\operatorname{div} & \left(\mathbf{1}_{t}-\mathbf{1}_{s}\right) \\
-\operatorname{div} & -\left(\mathbf{1}_{t}-\mathbf{1}_{s}\right)
\end{array}\right)\binom{f}{z} \leqslant\left(\begin{array}{l}
c \\
0 \\
0
\end{array}\right) \\
& f, z \geqslant 0
\end{aligned}
$$

Its dual problem is

$$
\begin{array}{r}
\langle c, y\rangle \\
\min _{y \in \mathbb{R}^{|E|}, \ell^{-}, \ell^{+} \in \mathbb{R}|V|} \\
\text { subject to } \quad\left(\begin{array}{ccc}
\operatorname{Id} & \operatorname{div}^{\top} & -\operatorname{div}^{\top} \\
0 & \left(\mathbf{1}_{t}-\mathbf{1}_{s}\right)^{\top} & -\left(\mathbf{1}_{t}-\mathbf{1}_{s}\right)^{\top}
\end{array}\right)\left(\begin{array}{c}
y \\
\ell^{-} \\
\ell^{+}
\end{array}\right) \geqslant\binom{ 0}{1} \\
y, \ell^{-}, \ell^{+} \geqslant 0
\end{array}
$$

Note that the transposed of div is a linear mapping that maps a function $g: V \rightarrow \mathbb{R}$ to a function $\operatorname{div}^{\top} g: E \rightarrow \mathbb{R}$. In particular, we have

$$
\begin{aligned}
\operatorname{div}^{\top} g(i, j) & =\left\langle\delta_{i, j}, \operatorname{div}^{\top} g\right\rangle=\left\langle\operatorname{div} \delta_{i, j}, g\right\rangle \\
& =\sum_{u \in V} g(u)\left[\operatorname{div} \delta_{i, j}\right](u) \\
& =\sum_{u \in V} g(u)\left[\sum_{(u, v) \in E} \delta_{i, j}(u, v)-\sum_{(v, u) \in E} \delta_{i, j}(v, u)\right] \\
& =g(i)-g(j)
\end{aligned}
$$

Note that the transposed of div is a linear mapping that maps a function $g: V \rightarrow \mathbb{R}$ to a function $\operatorname{div}^{\top} g: E \rightarrow \mathbb{R}$. In particular, we have

$$
\begin{aligned}
\operatorname{div}^{\top} g(i, j) & =\left\langle\delta_{i, j}, \operatorname{div}^{\top} g\right\rangle=\left\langle\operatorname{div} \delta_{i, j}, g\right\rangle \\
& =\sum_{u \in V} g(u)\left[\operatorname{div} \delta_{i, j}\right](u) \\
& =\sum_{u \in V} g(u)\left[\sum_{(u, v) \in E} \delta_{i, j}(u, v)-\sum_{(v, u) \in E} \delta_{i, j}(v, u)\right] \\
& =g(i)-g(j)
\end{aligned}
$$

In other words, we have $\operatorname{div}^{\top}=-$ Grad.

The dual of MaxFlow becomes therefore

$$
\begin{aligned}
& \min _{y \in \mathbb{R}^{|E|}, \ell \in \mathbb{R}^{|V|}}\langle c, y\rangle \\
& \text { subject to }\left(\begin{array}{cc}
\operatorname{Id} & \operatorname{Grad} \\
0 & -\left(\mathbf{1}_{t}-\mathbf{1}_{s}\right)^{\top}
\end{array}\right)\binom{y}{\ell}
\end{aligned} \geqslant\binom{ 0}{1}
$$

The dual of MaxFlow becomes therefore

$$
\begin{aligned}
& \min _{y \in \mathbb{R}^{|E|}, \ell \in \mathbb{R}^{|V|}}\langle c, y\rangle \\
& \text { subject to }\left(\begin{array}{cc}
\operatorname{Id} & \operatorname{Grad} \\
0 & -\left(\mathbf{1}_{t}-\mathbf{1}_{s}\right)^{\top}
\end{array}\right)\binom{y}{\ell}
\end{aligned} \geqslant\binom{ 0}{1}
$$

Since the constraint matrix is totally unimodular, we obtain

$$
\begin{aligned}
\min _{y \in \mathbb{Z}|E|, \ell \in \mathbb{Z}|V|} & \langle c, y\rangle \\
\text { subject to } & y
\end{aligned}
$$

We make the following observations:
■ Changing ℓ by a constant value does not change y. Hence $\ell(t):=0$.

We make the following observations:
■ Changing ℓ by a constant value does not change y. Hence $\ell(t):=0$.
■ For $\ell(s)>1$, the cost w.r.t. $\left(\frac{\ell}{\ell(s)}, \frac{y}{\ell(s)}\right)$ is lower. Hence $\ell(s):=1$.

We make the following observations:
■ Changing ℓ by a constant value does not change y. Hence $\ell(t):=0$.

- For $\ell(s)>1$, the cost w.r.t. $\left(\frac{\ell}{\ell(s)}, \frac{y}{\ell(s)}\right)$ is lower. Hence $\ell(s):=1$.

■ If there exists a node $i \in V$ with $\ell(i) \notin\{0,1\}$, we can decrease the cost by clipping ℓ at 0 resp. 1 .

Hence, the dual of the MaxFlow is the MinCut:

$$
\min _{\ell \in \mathbb{B}^{|V|}}
$$

subject to

$$
\begin{array}{r}
\langle c, \max (0,-\operatorname{Grad} \ell)\rangle \\
\quad \ell(s)=1 \quad \ell(t)=0
\end{array}
$$

The MaxFlow-MinCut theorem can be seen as special case of the duality theorem for LPs.

The MaxFlow-MinCut theorem can be seen as special case of the duality theorem for LPs.

We saw that quadratic submodular pseudo-Boolean functions can be cast as a graph cut problem with positive edge weights. MaxFlow, the dual problem of MinCut, exploits this non-negativity.

The MaxFlow-MinCut theorem can be seen as special case of the duality theorem for LPs.

We saw that quadratic submodular pseudo-Boolean functions can be cast as a graph cut problem with positive edge weights. MaxFlow, the dual problem of MinCut, exploits this non-negativity.

The Ford-Fulkerson algorithm starts with a basic feasible solution, namely the zero-flow.

The MaxFlow-MinCut theorem can be seen as special case of the duality theorem for LPs.

We saw that quadratic submodular pseudo-Boolean functions can be cast as a graph cut problem with positive edge weights. MaxFlow, the dual problem of MinCut, exploits this non-negativity.

The Ford-Fulkerson algorithm starts with a basic feasible solution, namely the zero-flow.

Solving MaxFlow with the simplex method would lead to a setup where in each step at least $1+|E|-|V|$ variables are 0 . This is not necessarily the case for the Ford-Fulkerson method.

The MaxFlow-MinCut theorem can be seen as special case of the duality theorem for LPs.

We saw that quadratic submodular pseudo-Boolean functions can be cast as a graph cut problem with positive edge weights. MaxFlow, the dual problem of MinCut, exploits this non-negativity.

The Ford-Fulkerson algorithm starts with a basic feasible solution, namely the zero-flow.

Solving MaxFlow with the simplex method would lead to a setup where in each step at least $1+|E|-|V|$ variables are 0 . This is not necessarily the case for the Ford-Fulkerson method.

Next lecture we will reformulate the general quadratic pseudo-Boolean optimization problem in order to minimize some non-submodular energies.

Linear Program

■ Kantorovich, "A New Method of Solving Some Classes of Extremal Problems", 1940, Dokl. Akad. Sci USSR (28), 211-214.
■ Schrijver, Combinatorial Optimization, Chapter 5.

Simplex Method

■ Dantzig, Maximization of a Linear Function of Variables subject to Linear Inequalities, 1947.

- Bland, New Finite Pivoting Rules for the Simplex Method, 1977, Mathematics of OR (2), 103-107.

