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Quadratic. Pseudo-Boolean Energies
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We saw that every pseudo-Boolean energy E': B™ — R can be represented as a
multilinear function in the variables z1, ..., z,.

In the following we assume the case of quadratic pseudo-Boolean energies

j < 0 refer to submodular terms and Cj; > 0 to supermodular terms.
Defining the sets

N={G,7) e {1,....n}*| C; < 0}
Pi={(i,) € {1,...,n}*|Cyy > 0},

we know that E is submodular (supermodular) iff [P| = 0 (|N| = 0).
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Quadratic Pseudo-Boolean Optimization
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For submodular functions

E(I) =Co+ Z
i=1

(i,)eN

we saw that the problem can be cast as a MaxFlow problem that can be solved Linearization
efficiently. In particular, the MaxFlow-MinCut theorem is a special case of the
duality theorem for LPs.

What makes the MaxFlow-MinCut duality so interesting is that while MaxFlow is
an LP, the MinCut is an ILP. The strong duality between these two problems is
only possible because the constraint matrix is totally unimodular.

The idea of the quadratic pseudo-Boolean optimization (QPBO) is to
reformulate the minimization problem as an ILP and to find an approximative
solution. Since QPBO is NP hard, we cannot expect to find the minimal energy.
Instead we will compute a lower bound of the minimum energy.
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Linearization thy Discrete Rhys Form
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The central idea of transforming a quadratic energy into a linear energy is to
introduce new variables y;; € [0,1] and adding extra linear constraints in order to
assure that for 2;,z; € B, we have y r;. (RF) min
zeR™ yeRnxn
If either x; = 0, we have to enforce y;; = 0. This can be done by
subject to: Yij T for all
Yij S T Yij < Tj -y =0 for all
—yi5 =0 for all (i,
—r=>-1

Note that for x; = x; = 1 these constraints have no effect on y;;.
If z; = x; = 1, we have to enforce y;; = 1. This can be done by z,y >0

. n
i+ — 1 <y x €7
Note that for ; = 0 or &; = 0 this constraint has no effect on y;;. Note that due to our energy it is not necessary to enforce all three constraints to
all y;;. The constraint matrix becomes totally unimodular if P = .

IN2245 - Combinatorial Optimization in Computer Vision 8. Roof Duality -7 / 28 IN2245 - Combinatorial Optimization in Computer Vision 8. Roof Duality - 8 / 28



Continaous Rhys Form
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Instead of solving the Discrete Rhys Form, we can just solve the Continuous
Rhys Form by dropping the integer constaint z € Z".

Technically, we are minimizing the same energy. The only thing we change is the
set of feasible points. Hence we have for the LP’s minimizer (z,§) € R" Minorization

n
Co + Z Ciz; + Z Cijiifij

i=1 (ij)eP+N
n

<Cp + Z Cix; + Z C,;]'Z‘il‘j for all z € B™.
i=1 (i,j)eP+N

We denote the minimum of the continuous Rhys form as L(E) and we know

L(E) < min E(z)
zeB”

Modular Minorants

Complete. F7Family for Monomials
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Given a quadratic pseudo-Boolean function E: B" — R, we call a modular
function f: B® — R a modular minorant if Since the sum of modular functions are modular, it is enough to provide a

complete Family R c F; for the quadratic energies zy and —xy.
n

fl@)=fo+ Z fizi < E(x) forall z € B" In order to satisfy « + 3z + vy < £y, the following has to be satisfied
i=1

We denote the set of modular functions as F7. aa+fa+y<0 a+f+y<+l

A family R < Fi is called complete iff Minimizing the sum of the gaps (L' distance) leads to

BE(z) = r?e%%(f(z) for all z € B R(zy) ={Mz +y—1)[re[0,1]}

Given a complete family R < Fi, we can formulate the QPBO as and

. . R(—zy) ={—[A + (1 — Mg\ € [0,1]).
gﬁgE(z)fig}ﬁr}le%f(m) (=zy) ={-[A +( Jyllxe[0,1]}
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Roof Duality h Roof Duality
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Combining the information of monomials, we obtain Every f € R is modular and therefore we can compute its minimum. Let

Co+ Z?:l Cixi+ "
R(E) = {  Zgep Cisdiglei + x5 — 1]+ [N €[0,1] fla) =Cot ;Cﬂﬁ
2 - Ci~[)\i~xi+(1—/\i-)xv] B
(e =l 1 Z Cij)\ij [.Tl + x5 — 1] + Z Ci]‘ [)\Z]I, + (1 — /\”)xj]
(i.j)eP (i.5)eN

= [Co = Zijer /\z’jcu’] +
| —

as a complete family of modular minorants.

We can now define another lower bound for mingegn E(z)

vo(f)
M(E) = max min f(z) < min max f(z)= min E(z). n
JER(E) ae 2€B? feR(E) e Z [Ci + 201 M Cij + X5 avep NiCii + 25 apen(1 — )\]i)cji] T
This lower value is called the roof dual of £. i=1 e
Vi
The roof duality was originally introduced for maximization problems. The term _ S _ .
“roof” reflects this, since it was defined as modular majorization. M(E) = reR(B) w(f) + l; vi(f) where v™ := min(v, 0)
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Roof Duality as LP *
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We can now formulate the roof duality as an LP:
n
RD “Ay —¢;
(RD) AMeRrn ceRrn (i%éP ut l; “
subject to Aij < Cy; for (i,j) e P Complementatlon
—(Aij + Mi;) < Gy for (i,5) e N
— 2 Ai]' — Z Aji+
Ji(i5)eP J(4,1)eP
Z Aij+ Z MjifciSEi fori=1,...,n
J(.5)eN J(4,1)eN
A M,e=0
Since this LP (RD) is dual to the Rhys form LP (RF), we have M (E) = L(E).
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Posiforms
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Roof Duality.and Posiforms *
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Hammer showed that these relaxations of a quadratic pseudo-Boolean energy are
equivalent. Besides these two interpretations Hammer proposed a third
interpretation that gives rise to an easy algorithm to compute the roof duality.

A pseudo-Boolean energy E can be written as a quadratic posiform ® € P,. The
constant Cy(®) of such as posiform provides us with a lower bound for E. Since
there is not a unique posiform representation for E, we can look for a posiform
with maximal Cy(®). This provides us with a third lower bound

C(E) = Co(®) < min E(z).

(E) = max Co(®) < min E(z)

The MaxFlow method can be seen as rewriting a submodular pseudo-Boolean
function in different posiforms until we obtain a proof for

3P e Py: E— & = min E(z).
zeBn

This equality is not true for general quadratic pseudo-Boolean functions.

Roof Duality'and Posiforms *
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Lemma 2. For a quadratic E: B" — R we have C(E) < M(E).

Proof. Given the representation E = C'(E) + ® for ® € P,, we can write
® = &y + &, where ®; contains the linear and ®, the quadratic part of ®:

n
<I>2(x) = Z Qi TiT5 + [ﬁjfifj + VijTix; + (5,']'231'5]' (Oé,ﬁ,"}/, o= 0)

ij=1

Observing that zy + 27 = x, we can choose the seperation of ®; and @3 in a way
that a;; + Bi; > 0 and 7;; + d;; > 0 is not simultaneously true. Defining

P :={(i,j) € {1, . ,n}2|o¢i]- —+ ﬁi]' > 0}
N:={(i,5) € {1,...,n}?|vij + 6;; > 0}

we can rewrite the quadratic terms of p := E — &y = C(E) + ®; as
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Lemma 1. For a quadratic E: B" — R we have M(E) < C(E).

Proof. Let p=wvy+ Y, viz; € R(E) be a “roof” of E.
Then we know that E — p is a positive linear combination of

—TiTj + [(1 — )\U):U, + )\ijx]-] =/\,'_7'.Z‘7;fj + (1 — )\i]-)f,-xj
TiTj — )\1][11 +x; — 1] :/\ijTiTj + (1 — Aij)zix]'

Hence ® := E — p e Py is a posiform. Rewriting p(z) = L(z,T) + ¢ with
n n
L(z,7) = Z vie, — Z VT
i=1 i=1

we have E = ¢+ (L + ®) with L + ® € Ps.
Since ¢ = mingepn p(z), we have M(E) < C(E).

Roof Duality and Posiforms *
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Proof (Cont.).
n n
0= > (Cij—ay—Bipzixi+ Y, (Cyj+7i+ i) wiz;
(i-j)eP (i-j)eN

Hence Cyj = ajj + fij for (i,4) € P and —Cjj = ;; + d;; for (i,7) € N. Defining
Nij = g—z for (i,j) € P and \;j = jgﬁ for (i,7) € N we obtain

p=Co + Zn: Ciwi+

i=1
Z Cij/\ij [1 —T;— xj] + 2 Ci]' [/\”Zl + (]. - )\)xj]
(i.j)eP (i.j)eN

Thus p = C(E) + ®; € R(E) and therefore M(E) > C(E).
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Equivalent.Roof Duality Formulations

Linearization Minorization Network Flow

QPBO

Complementation

Theorem 1 (Hammer et al.). For a pseudo-Boolean function E, the roof duality is
M(E)=L(E)=C(E).

This equivalence is surprising, because each lower bound is interpreting the energy
E very differently

B The minorization interprets E as a Pseudo-Boolean functions and
approximates it from below by modular functions.

B The linearization interprets the minimization of F as an ILP and uses the
continuous relaxation by ignoring the integer constraints.

B The complementation interprets E as an algebraic expression and performs
algebraic reformulations.

L(E) = M(E) proves that the roof duality can be solved in polynomial time by
optimizing an LP. C(E) = M(E) will help us to reformulate the computation of
the roof duality as a MaxFlow problem.
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Roof Duality as Network Flow
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Complementation

Given a quadratic pseudo-Boolean energy in posiform

o(z) = Co+ ), Cizi+ ), Cijwia;
€L i,jeL
where £ = {1,...,n,1,...,m} is the set of literals and z; :=T; = 1 — ;.

Now we define the network Gg = (V, E, ¢,0,0) with V = £ + {0,0}. Using the
conventions that zg = 1 and x5 = 0 we can rewrite ® as

(I>(l‘) =Co+ Z Cijxixj
i,jeV

The edges (i, j) € E and the capacities c: E — R are defined as

. = - 1
Cij > 0:=(4,5),(j,i) e B c(i,j) = c(4, i) = icij

Linearization Minorization Complementation Network Flow

Network Flow

Computation of Roof Duality

Linearization Minorization Network Flow

Complementation

Computing the maximal flow in the network G changes the capacities of the

residual graph. Let ig,...,4; be a path from ig = 0 to iz, = 0. Then:
k=1 k=1
=P —¢ zi1+2zijfi]+l+fik +52Tijx,-]“+e
j=1 j=1

This proves that we can compute a lower bound of the roof duality.

Since there is a one-to-one relationship between posiforms ® and networks G, we
obtain equality. In other words, the max flow provides us with the value of the roof
duality.
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Strong, Persistency
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Theorem 2. Let E: B" — R be a pseudo-Boolean function represented as a
posiform ® such that 0 and 0 are disconnected in G and let S L be the set of
literals that are path-connected with the source 0.

Given an arbitrary © € B"™, we can create xg that replaces each literal in S with the
value 1. Then we have E(zg) < E(z).

Before we prove this theorem, we have to see whether zg is well defined. To this
end we have to prove that for each u € S we have u ¢ S. Assume that u,w€ S. In
other words there are paths from 0 to u and from 0 to @ in Gg.

k
2 Ty Tijey =
Jj=0

This shows that the path from 0 to @ implies a path from u to 0.
Together with the path from 0 to u we constructed a contradiction.

k

2 L i1 Tiney

Jj=0

io =0,ik41 =71
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Kolmogorov’s Method
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Kolmogorv proposed a certain set of heuristics in order to obtain as much
information as possible from the roof duality computation:

B First compute the maximal flow in the subgraph Gy that only contains the
submodular pairwise terms.

B Create the roof duality graph with respect to the residual graph of G and add
the edges with respect to the supermodular terms.

B After computing the maximal flow label all nodes u such that there is no path
from u to @ in the residual graph. This is done by analyzing the connected
components of V — S —T.

B The connected components form an acyclic digraph and we obtain a
topological ordering 7 : V' — S — T — 7Z which helps us to extend S and T

S =S + {u|r(uv) > n(u)}
T =T + {u|r(u) < 7(w)}
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Strong; Persistency
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Proof (Strong Persistency). Since xg is well defined, we also know that the
inversed literals of S are in the connected component T with respect to 0.
Every z € B" defines a cut (A, B) of the graph G with

E(z) = C(E) + Cut(A, B).

By replacing A with A’ = (A U S)\T and B with B’ = (B u T')\S, we obtain a
lower cut value. Moreover (A’, B') is the cut associated with zg and the theorem
is proven.

The persistency theorem shows that we can find the correct labeling for some of
the involved variables. By replacing these variables with their true values, we can
reformulate the energy with respect to the remaining n — |S| variables. This
procedure can ber iterated until |S| = 0.
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