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We saw that every pseudo-Boolean energy E : Bn Ñ R can be represented as a
multilinear function in the variables x1, . . . , xn.

In the following we assume the case of quadratic pseudo-Boolean energies

Epxq “ C0 `
nÿ

i“1

Cixi `
nÿ

i,j“1

Cijxixj

Cij ă 0 refer to submodular terms and Cij ą 0 to supermodular terms.

Defining the sets

N :“  pi, jq P t1, . . . , nu2 ˇ̌Cij ă 0
(

P :“  pi, jq P t1, . . . , nu2 ˇ̌Cij ą 0
(
,

we know that E is submodular (supermodular) iff |P | “ 0 (|N | “ 0).

Quadratic Pseudo-Boolean Optimization
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For submodular functions

Epxq “ C0 `
nÿ

i“1

Cixi `
ÿ

pi,jqPN
Cijxixj ,

we saw that the problem can be cast as a MaxFlow problem that can be solved
efficiently. In particular, the MaxFlow-MinCut theorem is a special case of the
duality theorem for LPs.

What makes the MaxFlow-MinCut duality so interesting is that while MaxFlow is
an LP, the MinCut is an ILP. The strong duality between these two problems is
only possible because the constraint matrix is totally unimodular.

The idea of the quadratic pseudo-Boolean optimization (QPBO) is to
reformulate the minimization problem as an ILP and to find an approximative
solution. Since QPBO is NP hard, we cannot expect to find the minimal energy.
Instead we will compute a lower bound of the minimum energy.
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The central idea of transforming a quadratic energy into a linear energy is to
introduce new variables yij P r0, 1s and adding extra linear constraints in order to
assure that for xi, xj P B, we have yij “ xi ¨ xj .
If either xi “ 0 or xj “ 0, we have to enforce yij “ 0. This can be done by

yij ď xi yij ď xj

Note that for xi “ xj “ 1 these constraints have no effect on yij .

If xi “ xj “ 1, we have to enforce yij “ 1. This can be done by

xi ` xj ´ 1 ď yij

Note that for xi “ 0 or xj “ 0 this constraint has no effect on yij .

Discrete Rhys Form
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Summarizing these observations, we obtain the following ILP for QPBO:

(RF) min
xPRn,yPRnˆn

nÿ

i“1

Cixi `
ÿ

pi,jqPP`N

Cijyij

subject to: yij ´ xi ´ xj ě ´ 1 for all pi, jq P P

xi ´ yij ě0 for all pi, jq P N

xj ´ yij ě0 for all pi, jq P N

´x ě ´ 1

x, y ě0

x PZn

Note that due to our energy it is not necessary to enforce all three constraints to
all yij . The constraint matrix becomes totally unimodular if P “ H.
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Instead of solving the Discrete Rhys Form, we can just solve the Continuous
Rhys Form by dropping the integer constaint x P Zn.

Technically, we are minimizing the same energy. The only thing we change is the
set of feasible points. Hence we have for the LP’s minimizer px̂, ŷq P Rn

C0 `
nÿ

i“1

Cix̂i `
ÿ

pi,jqPP`N

Cij x̂ix̂j

ďC0 `
nÿ

i“1

Cixi `
ÿ

pi,jqPP`N

Cijxixj for all x P Bn.

We denote the minimum of the continuous Rhys form as LpEq and we know

LpEq ď min
xPBn

Epxq

Minorization
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Given a quadratic pseudo-Boolean function E : Bn Ñ R, we call a modular
function f : Bn Ñ R a modular minorant if

fpxq “ f0 `
nÿ

i“1

fixi ď Epxq for all x P Bn

We denote the set of modular functions as F1.

A family R Ă F1 is called complete iff

Epxq “ max
fPR fpxq for all x P Bn

Given a complete family R Ă F1, we can formulate the QPBO as

min
xPBn

Epxq “ min
xPBn

max
fPR fpxq

Complete F1-Family for Monomials
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Since the sum of modular functions are modular, it is enough to provide a
complete Family R Ă F1 for the quadratic energies xy and ´xy.

In order to satisfy α ` βx ` γy ď ˘xy, the following has to be satisfied

α, α ` β, α ` γ ď 0 α ` β ` γ ď ˘1

Minimizing the sum of the gaps (L1 distance) leads to

Rpxyq “tλpx ` y ´ 1q|λ P r0, 1su

and

Rp´xyq “t´rλx ` p1 ´ λqys|λ P r0, 1su.

Roof Duality
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Combining the information of monomials, we obtain

RpEq “
$
&
%

C0 ` řn
i“1Cixi`ř

pi,jqPP Cijλijrxi ` xj ´ 1s`ř
pi,jqPN Cijrλijxi ` p1 ´ λijqxjs

ˇ̌
ˇ̌
ˇ̌λij P r0, 1s

,
.
-

as a complete family of modular minorants.

We can now define another lower bound for minxPBn Epxq
MpEq “ max

fPRpEq
min
xPB2

fpxq ď min
xPB2

max
fPRpEq

fpxq “ min
xPBn

Epxq.

This lower value is called the roof dual of E.

The roof duality was originally introduced for maximization problems. The term
“roof” reflects this, since it was defined as modular majorization.

Roof Duality
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Every f P R is modular and therefore we can compute its minimum. Let

fpxq “C0 `
nÿ

i“1

Cixi`
ÿ

pi,jqPP
Cijλijrxi ` xj ´ 1s `

ÿ

pi,jqPN
Cijrλijxi ` p1 ´ λijqxjs

“
”
C0 ´ ř

pi,jqPP λijCij

ı
looooooooooomooooooooooon

ν0pfq

`

nÿ

i“1

”
Ci ` řn

j“1 λijCij ` ř
j,pj,iqPP λjiCji ` ř

j,pj,iqPN p1 ´ λjiqCji

ı
looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon

νipfq

xi

MpEq “ max
fPRpEq

ν0pfq `
nÿ

i“1

νipfq´ where v´ :“ minpv, 0q

Roof Duality as LP *
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We can now formulate the roof duality as an LP:

(RD) max
Λ,MPRnˆn,ǫPRn

ÿ

pi,jqPP
´Λij `

nÿ

i“1

´ǫi

subject to Λij ď Cij for pi, jq P P

´ pΛij ` Mijq ď Cij for pi, jq P N

´
ÿ

j,pi,jqPP
Λij ´

ÿ

j,pj,iqPP
Λji`

ÿ

j,pi,jqPN
Λij `

ÿ

j,pj,iqPN
Mji ´ Ci ď ǫi for i “ 1, . . . , n

Λ,M, ǫ ě 0

Since this LP (RD) is dual to the Rhys form LP (RF), we have MpEq “ LpEq.

Complementation
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Hammer showed that these relaxations of a quadratic pseudo-Boolean energy are
equivalent. Besides these two interpretations Hammer proposed a third
interpretation that gives rise to an easy algorithm to compute the roof duality.

A pseudo-Boolean energy E can be written as a quadratic posiform Φ P P2. The
constant C0pΦq of such as posiform provides us with a lower bound for E. Since
there is not a unique posiform representation for E, we can look for a posiform
with maximal C0pΦq. This provides us with a third lower bound

CpEq “ max
ΦPP2

C0pΦq ď min
xPBn

Epxq.

The MaxFlow method can be seen as rewriting a submodular pseudo-Boolean
function in different posiforms until we obtain a proof for

DΦ P P2 : E ´ Φ “ min
xPBn

Epxq.

This equality is not true for general quadratic pseudo-Boolean functions.

Roof Duality and Posiforms *
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Lemma 1. For a quadratic E : Bn Ñ R we have MpEq ď CpEq.
Proof. Let p “ ν0 ` řn

i“1 νixi P RpEq be a “roof” of E.
Then we know that E ´ p is a positive linear combination of

´xixj ` rp1 ´ λijqxi ` λijxjs “λijxixj ` p1 ´ λijqxixj
xixj ´ λijrxi ` xj ´ 1s “λijxixj ` p1 ´ λijqxixj

Hence Φ :“ E ´ p P P2 is a posiform. Rewriting ppxq “ Lpx, xq ` c with

c “ ν0 `
nÿ

i“1

ν´
i Lpx, xq “

nÿ

i“1

ν`
i xi ´

nÿ

i“1

ν´
i xi

we have E “ c ` pL ` Φq with L ` Φ P P2.
Since c “ minxPBn ppxq, we have MpEq ď CpEq.

Roof Duality and Posiforms *
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Lemma 2. For a quadratic E : Bn Ñ R we have CpEq ď MpEq.
Proof. Given the representation E “ CpEq ` Φ for Φ P P2, we can write
Φ “ Φ1 ` Φ2 where Φ1 contains the linear and Φ2 the quadratic part of Φ:

Φ2pxq “
nÿ

i,j“1

αijxixj ` βijxixj ` γijxixj ` δijxixj pα, β, γ, δ ě 0q

Observing that xy ` xy “ x, we can choose the seperation of Φ1 and Φ2 in a way
that αij ` βij ą 0 and γij ` δij ą 0 is not simultaneously true. Defining

P :“tpi, jq P t1, . . . , nu2|αij ` βij ą 0u
N :“tpi, jq P t1, . . . , nu2|γij ` δij ą 0u

we can rewrite the quadratic terms of p :“ E ´ Φ2 “ CpEq ` Φ1 as

Roof Duality and Posiforms *
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Proof (Cont.).

0 “
nÿ

pi,jqPP
pCij ´ αij ´ βijqxixj `

nÿ

pi,jqPN
pCij ` γij ` δijqxixj

Hence Cij “ αij ` βij for pi, jq P P and ´Cij “ γij ` δij for pi, jq P N . Defining

λij “ βij

Cij
for pi, jq P P and λij “ δij

´Cij
for pi, jq P N we obtain

p “C0 `
nÿ

i“1

Cixi`
ÿ

pi,jqPP
Cijλijr1 ´ xi ´ xjs `

ÿ

pi,jqPN
Cijrλijxi ` p1 ´ λqxjs

Thus p “ CpEq ` Φ1 P RpEq and therefore MpEq ě CpEq.

Equivalent Roof Duality Formulations
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Theorem 1 (Hammer et al.). For a pseudo-Boolean function E, the roof duality is
MpEq “ LpEq “ CpEq.

This equivalence is surprising, because each lower bound is interpreting the energy
E very differently

■ The minorization interprets E as a Pseudo-Boolean functions and
approximates it from below by modular functions.

■ The linearization interprets the minimization of E as an ILP and uses the
continuous relaxation by ignoring the integer constraints.

■ The complementation interprets E as an algebraic expression and performs
algebraic reformulations.

LpEq “ MpEq proves that the roof duality can be solved in polynomial time by
optimizing an LP. CpEq “ MpEq will help us to reformulate the computation of
the roof duality as a MaxFlow problem.

Network Flow
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Given a quadratic pseudo-Boolean energy in posiform

Φpxq “ C0 `
ÿ

iPL
Cixi `

ÿ

i,jPL
Cijxixj

where L “ t1, . . . , n, 1, . . . , nu is the set of literals and xi :“ xi “ 1 ´ xi.

Now we define the network GΦ “ pV,E, c, 0, 0q with V “ L ` t0, 0u. Using the
conventions that x0 “ 1 and x0 “ 0 we can rewrite Φ as

Φpxq “ C0 `
ÿ

i,jPV
Cijxixj C0i :“ Ci

The edges pi, jq P E and the capacities c : E Ñ R`
0 are defined as

Cij ą 0 :ô pi, jq, pj, iq P E cpi, jq “ cpj, iq “ 1

2
Cij

Computation of Roof Duality
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Computing the maximal flow in the network GΦ changes the capacities of the
residual graph. Let i0, . . . , ik be a path from i0 “ 0 to ik “ 0. Then:

Φ1 “ Φ ´ ǫ

«
xi1 `

k´1ÿ

j“1

xijxij`1 ` xik

ff
` ǫ

k´1ÿ

j“1

xijxij`1 ` ǫ

This proves that we can compute a lower bound of the roof duality.

Since there is a one-to-one relationship between posiforms Φ and networks GΦ, we
obtain equality. In other words, the max flow provides us with the value of the roof
duality.
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Theorem 2. Let E : Bn Ñ R be a pseudo-Boolean function represented as a
posiform Φ such that 0 and 0 are disconnected in GΦ and let S Ă L be the set of
literals that are path-connected with the source 0.
Given an arbitrary x P Bn, we can create xS that replaces each literal in S with the
value 1. Then we have EpxSq ď Epxq.

Before we prove this theorem, we have to see whether xS is well defined. To this
end we have to prove that for each u P S we have u R S. Assume that u, u P S. In
other words there are paths from 0 to u and from 0 to u in GΦ.

kÿ

j“0

xijxij`1 “
kÿ

j“0

xik´j`1
xik´j

i0 “ 0, ik`1 “ u

This shows that the path from 0 to u implies a path from u to 0.
Together with the path from 0 to u we constructed a contradiction.

Strong Persistency

QPBO Linearization Minorization Complementation Network Flow

IN2245 - Combinatorial Optimization in Computer Vision 8. Roof Duality – 26 / 28

Proof (Strong Persistency). Since xS is well defined, we also know that the
inversed literals of S are in the connected component T with respect to 0.
Every x P Bn defines a cut pA,Bq of the graph GΦ with

Epxq “ CpEq ` CutpA,Bq.
By replacing A with A1 “ pA Y SqzT and B with B1 “ pB Y T qzS, we obtain a
lower cut value. Moreover pA1, B1q is the cut associated with xS and the theorem
is proven.

The persistency theorem shows that we can find the correct labeling for some of
the involved variables. By replacing these variables with their true values, we can
reformulate the energy with respect to the remaining n ´ |S| variables. This
procedure can ber iterated until |S| “ 0.

Kolmogorov’s Method
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Kolmogorv proposed a certain set of heuristics in order to obtain as much
information as possible from the roof duality computation:

■ First compute the maximal flow in the subgraph G0 that only contains the
submodular pairwise terms.

■ Create the roof duality graph with respect to the residual graph of G0 and add
the edges with respect to the supermodular terms.

■ After computing the maximal flow label all nodes u such that there is no path
from u to u in the residual graph. This is done by analyzing the connected
components of V ´ S ´ T .

■ The connected components form an acyclic digraph and we obtain a
topological ordering π : V ´ S ´ T Ñ Z which helps us to extend S and T :

S1 “S ` tu|πpuq ą πpuqu
T 1 “T ` tu|πpuq ă πpuqu

Literature *
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