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Quadratic Pseudo-Boolean Energies

We saw that every pseudo-Boolean energy E: B” — R can be represented as a multilinear function in the variables z1,...,z,.
In the following we assume the case of quadratic pseudo-Boolean energies
n n
E(:L‘) =Cp+ Z Cix; + Z Cij:L‘i:L‘j
i=1 i,j=1
C;j < 0 refer to submodular terms and Cj; > 0 to supermodular terms.

Defining the sets

{(i,5) e {1,...,n}?| C;; < 0}
={(,5) € {1,...,n}?| Ci; > 0},

we know that E' is submodular (supermodular) iff [P| = 0 (|| = 0).
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Quadratic Pseudo-Boolean Optimization
For submodular functions
n
E(a:) =Cp + Z Cixi + Z Cij:L‘i:L‘j,
i=1 (i,))eN

we saw that the problem can be cast as a MaxFlow problem that can be solved efficiently. In particular, the MaxFlow-MinCut theorem is a special case of
the duality theorem for LPs.

What makes the MaxFlow-MinCut duality so interesting is that while MaxFlow is an LP, the MinCut is an ILP. The strong duality between these two
problems is only possible because the constraint matrix is totally unimodular.

The idea of the quadratic pseudo-Boolean optimization (QPBO) is to reformulate the minimization problem as an ILP and to find an approximative
solution. Since QPBO is NP hard, we cannot expect to find the minimal energy. Instead we will compute a lower bound of the minimum energy.
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Linearization

The central idea of transforming a quadratic energy into a linear energy is to introduce new binary variables y;j € [0, 1] and adding extra linear constraints
in order to assure that for x;,z; € B, we have y;; = z; - z;.

If either z; = 0 or x; = 0, we have to enforce y;; = 0. This can be done by
Yij S &4 Yij < T
Note that for x; = z; = 1 these constraints have no effect on y;;.
If either z; = x; = 1, we have to enforce y;; = 1. This can be done by
T+ x5 — 1<y

Note that for z; = 0 or ; = 0 these constraints have no effect on y;;.
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Discrete Rhys Form

Summarizing the observations, we obtain the following ILP for QPBO:

n
(RF) min Z Cix; + Z Cijyij
zeR™, yeRn>" i=1 (i,j))eP+N
subject to: Yij—x; — x5 = —1 for all (i,j) € P
x; — yi; =0 for all (i,j) e N
x; — yij =0 for all (i,j) e N
—r>=>—-1
z,y =0
x eZ™

Note that due to our energy it is not necessary to enforce all three constraints to all y;;. The constraint matrix becomes totally unimodular if P = (.
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Continuous Rhys Form

Instead of solving the Discrete Rhys Form, we can just solve the Continuous Rhys Form by dropping the integer constaint x € Z".

Technically, we are minimizing the same energy. The only thing we change is the set of feasible points. Hence we have for the LP's minimizer (z,7) € R™

n
Co + Z Cizi + Z Cijdi;

i=1 (4,j)eP+N
n
<Co+ Y, Cimi+ Y, Cizz, for all z € B™.
=1 (1,j)eP+N

We denote the minimum of the continuous Rhys form as L(E) and we know

L(F) < min E(x)

zeB™
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Modular Minorants

Given a quadratic pseudo-Boolean function E: B®™ — R, we call a modular function f: B” — R a modular minorant if
n
f(x) =f0+2f¢:zi < E(x) for all z € B"
i=1
We denote the set of modular functions as Fj.
A family R < F7 is called complete iff

E(z) = for all B"
() 1}16%%{ f(z) orallz e

Given a complete family R < Fi, we can formulate the QPBO as

min F(z) = ;21182 r;le%%( f(z)
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Complete F;-Family for Monomials

Since the sum of modular functions are modular, it is enough to provide a complete Family R — F; for the quadratic energies xy and —zy.
In order to satisfy a + Sz + vy < txzy, the following has to be satisfied

a,a+ B,a+v<0 a+f+y< =+l
Minimizing the sum of the gaps (L! distance) leads to

R(zy) ={A(z +y - [ e [0,1]}

and

R(—zy) ={=[Az + (1 = A)y]|A € [0,1]}.
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Roof Duality

Combining the information of monomials, we obtain

Co + Z?:l Cixi+
R(E) =S 2gjep Cighiglz + x5 — 1]+ | A j € [0,1]
2 pen Ciglhijes + (1 = Agj)a]

as a complete family of modular minorants.
We can now define another lower bound for min,egn F(x)

M(E) = i < mi = min E(z).
(B) = msx, min, f(=) < min ma f(=) = main B(e)

This lower value is called the roof dual of E.

The roof duality was originally introduced for maximization problems. The term “roof” reflects this, since it was defined as modular majorization.
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Roof Duality

Every f € R is modular and therefore we can compute its minimum. Let

f(z) =Co + i Cizi+

i=1
Z Cij)\ij [:L‘Z + x5 = 1] + Z Cij [)\U:L‘Z + (1 — )\ij)a:j]
(i,5)eP (i.5)eN
= [Co = 2(ij)ep Aijcij] +
vo(f)
n
[Ci + 20521 NiCij + 25 .iyep AiiCii + 20, ajen (1 — Aji)Cji] T
i=1 —
vi(f)
n
M(FE) = max vo(f)+ > vi(f)” where v~ := min(v, 0
() = s o)+ 33400 (0
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Roof Duality as LP
We can now formulate the roof duality as an LP:
(RD) max
AR XN ccR™

subject to

— Z Aij — Z Ajz‘-f—

J,(i,5)eP 3,(G,i)epP

Z Aij-f— Z sz‘_Ci <€

J,(6,3)EN 3, 1)eN

Since this LP (RD) is the dual LP of the Rhys form LP (RF), we have M (E) = L(E).

for (i,7) e P
for (i,7) e N

fori=1,....,n
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Posiforms

Hammer showed that these relaxations of a quadratic pseudo-Boolean energy are equivalent. Besides these two interpretations Hammer proposed a third
interpretation that gives rise to an easy algorithm to compute the roof duality.

A pseudo-Boolean energy E can be written as a quadrativ posiform ® € Py. The constance Cy(®) of such as posiform provides us with a lower bound for
E. Since there is not a unique posiform representation for E, we can look for a posiform with maximal Cy(®). This provides us with a third lower bound

C(F) = glg)};(}’o(@) < min E(z).

The MaxFlow method can be seen as rewriting a submodular pseudo-Boolean function in different posiforms until we obtain a proof for

3¢ ePy: E— P = min E(x).

reB"

This equality is not true for general quadratic pseudo-Boolean functions.
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Roof Duality and Posiforms

Lemma 1. For a quadratic E: B" — R we have M (FE) < C(E).

Proof. Let p = vy + >/, vix; € R(E) be a “roof” of E. Then we know that E — p is a positive linear combination of

we have £ = ¢+ (L + @) with L + ® € Ps.
Since ¢ = mingepn p(x), we have M(E) < C(E). O
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Roof Duality and Posiforms

Lemma 2. For a quadratic E: B — R we have C(E) < M(E).
Proof. Given the representation E = C'(E) + ® for ® € P,, we can write ® = & + ®5 where ®; contains the linear and ®, the quadratic part of ®:
n
‘132(.13) = Z Qi TT5 + ﬁijfifj + ’yijfia:j + 61']'1'2‘5]' (Oé,ﬁ,’}/,(S = 0)
ij=1
Observing that zy + 27 = , we can choose the seperation of ®; and ®5 in a way that a;; + 3;; > 0 and ;; + 6;; > 0 is not simultaneously true. Defining

P IZ{(i,j) € {1, e ,n}2|aij + ,Bij > 0}
N :={(i,5) € {1,...,n}’|yi; + 65 > 0}

we can rewrite the quadratic terms of p := E — &3 = C(E) + ®; as
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Roof Duality and Posiforms

Proof (Cont.).

0= Z (Cij -y — BU) T;xj + Z (Cij + vij + 5ij) Tix
(4,4)eP (4,4)eN

Hence Cj; = ayj + By for (i,7) € P and —Cj; = ~;j + 6,5 for (i,5) € N. Defining \;; = gi for (i,j) € P and \;j = fg” for (i,7) € N we obtain
(%] )

D =Cpy + Z Cixi+
=1
Z Oij)\ij[l —x; — .Tj] + Z CU[)\ZJ:L‘Z + (1 - )\)ZL‘J]
(i.j)eP (i,5)eN

Thus p = C(E) + &1 € R(E) and therefore M (E) > C(E). O
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Equivalent Roof Duality Formulations

Theorem 1 (Hammer et al.). For a pseudo-Boolean function E, the roof duality is M (E) = L(F) = C(E).

This equivalence is surprising, because each lower bound is interpreting the energy E very differently

B The minorization interprets E as a Pseudo-Boolean functions and approximates it from below by modular functions.
B The linearization interprets the minimization of E as an ILP and uses the continuous relaxation by ignoring the integer constraints.
B The complementation interprets F as an algebraic expression and performs algebraic reformulations.

L(E) = M(E) proves that the roof duality can be solved in polynomial time by optimizing an LP. C(FE) = M (FE) will help us to reformulate the
computation of the roof duality as a MaxFlow problem.
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Roof Duality as Network Flow

Given a quadratic pseudo-Boolean energy in posiform

<I>(ac) =Cy+ Z Cix; + Z Cijxixj

€L i,j€L
where £ ={1,...,n,1,..., 71} is the set of literals and z; :=7; = 1 — z;.
Now we define the network Go = (V. E,¢,0,0) with V' = £ + {0,0}. Using the conventions that 2y = 1 and z5 = 0 we can rewrite ® as

‘13(1’) =Cp + Z Oijl'ixj Cop; :=C;
i,jeV

The edges (i,7) € E and the capacities c: E — R are defined as

Ci,j >0 (175)7 (]75) ek C(%]) = C(]J) = _Ci,j
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Computation of Roof Duality

Computing the maximal flow in the network G changes the capacities of the residual graph. Let ig,...,i; be a path from iy = 0 to i;, = 0. Then:
k—1 k—1
O =P —¢ T + injfij+1 + 7, —I—eZTijl‘iHl + €
j=1 j=1

This proves that we can compute a lower bound of the roof duality.

Since there is a one-to-one relationship between posiforms ® and networks Gg, we obtain equality. In other words, the max flow provides us with the value
of the roof duality.
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Strong Persistency

Theorem 2. Let E: B” — R be a pseudo-Boolean function represented as a posiform ® such that 0 and 0 are disconnected in G and let S < L be the set
of literals that are path-connected with the source Q.
Given an arbitrary x € B", we can create xg that replaces each literal in S with the value 1. Then we have E(zs) < E(x).

Before we prove this theorem, we have to see whether xg is well defined. To this end we have to prove that for each u € S we have ©w ¢ S. Assume that
u,u € S. In other words there are paths from 0 to u and from 0 to @ in Gg.

k
Z TijTijen =

Jj= J

xgkfjﬂxgkfj
0

k
ig = 0,41 =T

This shows that the path from 0 to @ implies a path from u to 0.
Together with the path from 0 to u we constructed a contradiction.
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Strong Persistency
Proof (Strong Persistency). Since xg is well defined, we also know that the inversed literals of S are in the connected component T' with respect to 0.
Since every z € B"™ defines a cut (A, B) of the graph G4 with

E(x) = C(FE) + Cut(A, B).

By replacing A with A" = (A U S)\T and B with B’ = (B u T')\\S, we obtain a lower cut value. Moreover (A", B’) is the cut associated with xg and the
theorem is proven. O

The persistency theorem shows that we can find the correct labeling for some of the involved variables. By replacing these variables with their true values,
we reformulate the energy with respect to the remaining n — |.S| variables and can iterate until |S| = 0.
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Kolmogorov’s Method

Kolmogorv proposed a certain set of heuristics in order to obtain as much information as possible from the roof duality computation:

B First compute the maximal flow in the subgraph Gg that only contains the submodular pairwise terms.
B Create the roof duality graph with respect to the residual graph of Gy and add the edges with respect to the supermodular terms.
B After computing the maximal flow label all nodes u such that there is no path from u to w in the residual graph. This is done by analyzing the

connected components of V — S5 —T.
B The connected components form an acyclic digraph and we obtain a topological ordering 7w : V — .S — T — Z which helps us to extend S and T"

S =S + {uln(u) > (@)}
T' =T + {uln(u) < (@)}
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