Combinatorial Optimization in Computer Vision (IN2245)

Frank R. Schmidt
Csaba Domokos

Winter Semester 2015/2016

Inference means the procedure to estimate the probability distribution, encoded by a graphical model, for a given data.
Assume we are given a factor graph and the observation x.

- Maximum A Posteriori (MAP) inference: find the state $y^{*} \in \mathcal{Y}$ of maximum probability,

$$
y^{*} \in \underset{y \in \mathcal{Y}}{\operatorname{argmax}} p(Y=y \mid x)=\underset{y \in \mathcal{Y}}{\operatorname{argmin}} E(y ; x) .
$$

- Probabilistic inference: find the value of the \log partition function and the marginal distributions for each factor,

$$
\begin{aligned}
\log Z(x) & =\log \sum_{y \in \mathcal{Y}} \exp (-E(y ; x)) \\
\mu_{F}\left(y_{F}\right) & =p\left(Y_{F}=y_{F} \mid x\right) \quad \forall F \in \mathcal{F}, \forall y_{F} \in \mathcal{Y}_{F}
\end{aligned}
$$

Assume that we are given the following factor graph and a corresponding energy function $E(y)$, where $\mathcal{Y}=\mathcal{Y}_{i} \times \mathcal{Y}_{j} \times \mathcal{Y}_{k} \times \mathcal{Y}_{l}$.

We want to compute $p(y)$ for any $y \in \mathcal{Y}$ by making use of the factorization

$$
p(y)=\frac{1}{Z} \exp (-E(y))
$$

Problem: we also need to calculate the partition function

$$
Z=\sum_{y \in \mathcal{Y}} \exp (-E(y))=\sum_{y_{i} \in \mathcal{Y}_{i}} \sum_{y_{j} \in \mathcal{Y}_{j}} \sum_{y_{k} \in \mathcal{Y}_{k}} \sum_{y_{l} \in \mathcal{Y}_{l}} \exp \left(-E\left(y_{i}, y_{j}, y_{k}, y_{l}\right)\right),
$$

which looks expensive (the sum has $\left|\mathcal{Y}_{i}\right| \cdot\left|\mathcal{Y}_{j}\right| \cdot\left|\mathcal{Y}_{k}\right| \cdot\left|\mathcal{Y}_{l}\right|$ terms).

IN2245 - Combinatorial Optimization in Computer Vision

Note that we can successively eliminate variables, that is

$$
Z=\sum_{y_{i} \in \mathcal{Y}_{i}} \sum_{y_{j} \in \mathcal{Y}_{j}} \exp \left(-E_{A}\left(y_{i}, y_{j}\right)\right) \sum_{y_{k} \in \mathcal{Y}_{k}} \exp \left(-E_{B}\left(y_{j}, y_{k}\right)\right) \underbrace{\sum_{y_{i} \in \mathcal{Y}_{l}} \exp \left(-E_{C}\left(y_{k}, y_{l}\right)\right)}
$$

$$
r_{C \rightarrow Y_{k}}\left(y_{k}\right)
$$

$$
=\sum_{y_{i} \in \mathcal{Y}_{i}} \sum_{y_{j} \in \mathcal{Y}_{j}} \exp \left(-E_{A}\left(y_{i}, y_{j}\right)\right) \underbrace{\sum_{y_{k} \in \mathcal{Y}_{k}} \exp \left(-E_{B}\left(y_{j}, y_{k}\right)\right) r_{C \rightarrow Y_{k}}\left(y_{k}\right)}_{r_{B \rightarrow Y_{j}}\left(y_{j}\right)}
$$

$$
\left.=\sum_{y_{i} \in \mathcal{V}_{j},} \sum_{y_{i \in \mathcal{V}_{j}}} \exp \left(-E_{A}\left(y_{i}, y_{j}\right)\right)_{B_{B \rightarrow-}\left(Y_{j}\left(y_{j}\right)\right.}\right) \sum_{y_{i} \in \mathcal{Y}_{i}} r_{A \rightarrow r_{i}}\left(y_{i}\right) .
$$

 algorithm to solve the above maximization.
By applying the \ln function, we have

First we define the singleton max-marginal as $y_{i}^{*} \in \operatorname{argmax}_{y_{i} \in \mathcal{Y}_{i}} v_{i}\left(y_{i}\right)$ and set $\mathcal{I}=\{i\}$. node Y_{j} such that
and set $\mathcal{I}=\mathcal{I} \cup\{j\}$.

IN2245 - Combinatorial Optimization in Computer Vision

1. $q_{Y_{l} \rightarrow C}(0)=q_{Y_{l} \rightarrow C}(1)=0$
2. $r_{B \rightarrow Y_{k}}(0)=-1$
$r_{B \rightarrow Y_{k}}(1)=-0.5$

$$
y^{*} \in \underset{y \in \mathcal{Y}}{\operatorname{argmax}} p(y)=\underset{y \in \mathcal{Y}}{\operatorname{argmax}} \frac{1}{Z} \tilde{p}(y)=\underset{y \in \mathcal{Y}}{\operatorname{argmax}} \tilde{p}(y)
$$

Similar to the sum-product algorithm one can obtain the so-called max-sum

$$
\begin{aligned}
\ln \max _{y \in \mathcal{Y}} \tilde{p}(y) & =\max _{y \in \mathcal{Y}} \ln \tilde{p}(y) \\
& =\max _{y \in \mathcal{Y}} \ln \prod_{F \in \mathcal{F}} \exp \left(-E_{F}\left(y_{F}\right)\right) \\
& =\max _{y \in \mathcal{Y}} \sum_{F \in \mathcal{F}}-E_{F}\left(y_{F}\right) .
\end{aligned}
$$

$$
v_{i}\left(y_{i}\right)=\max _{y^{\prime} \in \mathcal{Y}, y_{i}^{\prime}=y_{i}} p\left(y^{\prime}\right) .
$$

The following back-tracking algorithm is applied for choosing an optimal y^{*}.

1. Initialize the procedure at the root node $\left(Y_{i}\right)$ by choosing any
2. In a topological order, for each $j \in V \backslash\{i\}$ choose a configuration y_{j}^{*} at the

$$
y_{j}^{*} \in \underset{y_{j} \in \mathcal{Y}_{j}}{\operatorname{argmax}} \max _{\substack{y^{\prime} \in \mathcal{Y}, y_{j}^{\prime}=y_{j}, \forall i \in \mathcal{I}}}^{y_{i}^{\prime}=y_{i}^{*}}<1\left(y^{\prime}\right),
$$

9. Belief Propagation - 10 / 38

Let us consider the following factor graph with binary variables:

Let us chose the node Y_{i} as root. We calculate the messages for the max-sum algorithm from leaf-to-root direction in a topological order as follows.
2. $r_{C \rightarrow Y_{k}}(0)=\max _{y_{l} \in\{0,1\}}\left\{-E_{c}\left(0, y_{l}\right)+q_{Y_{l} \rightarrow C}(0)\right\}=\max _{y_{l} \in\{0,1\}}-E_{c}\left(0, y_{l}\right)=0$
$r_{C \rightarrow Y_{k}}(1)=\max _{y_{l} \in\{0,1\}}\left\{-E_{c}\left(1, y_{l}\right)+q_{Y_{l} \rightarrow C}(1)\right\}=\max _{y_{l} \in\{0,1\}}-E_{c}\left(1, y_{l}\right)=0$
4. $q_{Y_{k} \rightarrow A}(0)=r_{B \rightarrow Y_{k}}(0)+r_{C \rightarrow Y_{k}}(0)=-1+0=-1$
$q_{Y_{k} \rightarrow A}(1)=r_{B \rightarrow Y_{k}}(1)+r_{C \rightarrow Y_{k}}(1)=-0.5+0=-0.5$

IN2245 - Combinatorial Optimization in Computer Vision

Sum-product alg.

$$
\begin{aligned}
& q_{Y_{i} \rightarrow F}\left(y_{i}\right)=\sum_{F^{\prime} \in M(i) \backslash\{F\}} r_{F^{\prime} \rightarrow Y_{i}}\left(y_{i}\right) \\
& r_{F \rightarrow Y_{i}}\left(y_{i}\right)=\max _{\substack{y_{F}^{\prime} \in \mathcal{Y}_{F} \\
y_{i}^{\prime}=y_{i}}}\left(-E_{F}\left(y_{F}^{\prime}\right)+\sum_{l \in N(F) \backslash\{i\}} q_{Y_{l} \rightarrow F}\left(y_{l}^{\prime}\right)\right) .
\end{aligned}
$$

The max-sum algorithm provides exact MAP inference for tree-structured factor graphs. In general, for graphs with cycles there is no guarantee for convergence.

IN2245 - Combinatorial Optimization in Computer Vision

- Sum-product algorithm

$$
\begin{aligned}
& q_{Y_{i} \rightarrow F}\left(y_{i}\right)=\prod_{F^{\prime} \in M(i) \backslash\{F\}} r_{F^{\prime} \rightarrow Y_{i}}\left(y_{i}\right) \\
& r_{F \rightarrow Y_{i}}\left(y_{i}\right)=\sum_{\substack{y_{F}^{\prime} \in \mathcal{Y}_{F}, y_{i}^{\prime}=y_{i}}}\left(\exp \left(-E_{F}\left(y_{F}^{\prime}\right)\right) \prod_{l \in N(F) \backslash\{i\}} q_{Y_{l} \rightarrow F}\left(y_{l}^{\prime}\right)\right)
\end{aligned}
$$

- Max-sum algorithm

$$
\begin{aligned}
& q_{Y_{i} \rightarrow F}\left(y_{i}\right)=\sum_{F^{\prime} \in M(i) \backslash\{F\}} r_{F^{\prime} \rightarrow Y_{i}}\left(y_{i}\right) \\
& r_{F \rightarrow Y_{i}}\left(y_{i}\right)=\max _{\substack{y_{F}^{\prime} \in \mathcal{Y}_{F}, y_{i}^{\prime}=y_{i}}}\left(-E_{F}\left(y_{F}^{\prime}\right)+\sum_{l \in N(F) \backslash\{i\}} q_{Y_{l} \rightarrow F}\left(y_{l}^{\prime}\right)\right)
\end{aligned}
$$

IN2245 - Combinatorial Optimization in Computer Vision
9. Belief Propagation $-20 / 38$

5. $\quad q_{Y_{j} \rightarrow A}(0)=q_{Y_{j} \rightarrow A}(1)=0$
6. $r_{A \rightarrow Y_{i}}(0)=\max _{y j, y_{k} \in\{0,1\}}\left\{-E_{A}\left(0, y_{j}, y_{k}\right)+q_{Y_{j} \rightarrow A}\left(y_{j}\right)+q_{Y_{k} \rightarrow A}\left(y_{k}\right)\right\}=-0.5$ $r_{A \rightarrow Y_{i}}(1)=\max _{y j, y_{k} \in\{0,1\}}\left\{-E_{A}\left(1, y_{j}, y_{k}\right)+q_{Y_{j} \rightarrow A}\left(y_{j}\right)+q_{Y_{k} \rightarrow A}\left(y_{k}\right)\right\}=0.5$
In order to calculate the maximal state y^{*} we apply back-tracking

1. $y_{i}^{*} \in \operatorname{argmax}_{y_{i} \in\{0,1\}} r_{A \rightarrow Y_{i}}\left(y_{i}\right)=\{1\}$
2. $y_{j}^{*} \in \operatorname{argmax}_{y_{j}} \max _{y j, y_{k} \in\{0,1\}}\left\{-E_{A}\left(1, y_{j}, y_{k}\right)+q_{Y_{i} \rightarrow A}(1)+q_{Y_{k} \rightarrow A}\left(y_{k}\right)\right\}=\{0\}$
3. $y_{k}^{*} \in \underset{\operatorname{argmax}}{\arg }\left\{r_{A \rightarrow Y_{k}}\left(1,0, y_{k}\right)+r_{B \rightarrow Y_{k}}\left(y_{k}\right)+r_{C \rightarrow Y_{k}}\left(y_{k}\right)\right\}$ $y_{k} \in\{0,1\}$
$=\operatorname{argmax}\left\{-E_{A}\left(1,0, y_{k}\right)+r_{B \rightarrow Y_{k}}\left(y_{k}\right)\right\}=\{1\}$ $y_{k} \in\{0,1\}$
4. $y_{l}^{*} \in \operatorname{argmax}_{y_{l} \in\{0,1\}}\left\{-E_{C}\left(y_{k}, 1\right)+q_{Y_{k} \rightarrow C}(1)\right\}=\{0\}$

Therefore, the optimal state $y^{*}=(1,0,1,0)$.

IN2245 - Combinatorial Optimization in Computer Vision

Human pose estimation

The goal is to recognize an articulated object with joints connecting different parts, here it is a human body.
An object is composed of a number of rigid parts. Each part is modeled as a rectangle parameterized by
(x, y, s, θ), where

- (x, y) means the center of the rectangle,
- $s \in[0,1]$ is a scaling factor, and
- the orientation is given by θ.

In overall, we have a four-dimensional pose space.
We denote the locations of two (connected) parts by

$l_{i}=\left(x_{i}, y_{i}, s_{i}, \theta_{i}\right)$ and $l_{j}=\left(x_{j}, y_{j}, s_{j}, \theta_{j}\right)$, respectively.

An object (e.g., human body) is given by a configuration $L=\left(l_{1}, \ldots, l_{n}\right)$, where l_{i} specifies the location of part v_{i}. The connections encode generic relationships such as "close to", "to the left of", or more precise geometrical constraints such as ideal joint angles.
■ The location of a joint between v_{i} and v_{j} is specified by two points $\left(x_{i j}, y_{i j}\right)$ and $\left(x_{j i}, y_{j i}\right)$.

- The relative orientation is given by $\theta_{i j}$, which is the difference between the orientation of the two parts.

In principle, all parts depend on each other, however, tree structured model can be considered for an articulated pose.
IN2245 - Combinatorial Optimization in Computer Vision \quad 9. Belief Propagation $-25 / 38$

The image filtering is a technique for modifying or enhancing an image (e.g., smoothing, edge detection, sharpening). For example, the smoothing of an input signal means of removing (or filtering out) high-frequency components.
A digital image can be considered as a two dimensional (discretized) signal that is $f: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{D}$. For example $D=3$ for color images.
Here we consider linear filtering in which the value of an output pixel is a linear combination of the values of the pixels in the input pixel's neighborhood. In a spatially discrete setting, a linear filter is a weighted sum:

$$
g\left(x_{0}, y_{0}\right)=[f * w]\left(x_{0}, y_{0}\right)=\sum_{m, n} w(m, n) f\left(x_{0}-m, y_{0}-n\right)
$$

which is also called discrete convolution of f and w. In practice this summation extends over a certain neighborhood. The matrix of weights $w(m, n)$ is called a mask.
(For more details please refer to the course of Variational Methods for Computer Vision.)

IN2245 - Combinatorial Optimization in Computer Vision
 9. Belief Propagation - 27 / 38

The pairwise energies have a special form as follows.

$$
d_{i j}\left(l_{i}, l_{j}\right)=-\ln \mathcal{N}\left(T_{j i}\left(l_{j}\right)-T_{i j}\left(l_{i}\right), \mathbf{0}, \mathbf{D}_{i j}\right),
$$

where where $T_{i j}, T_{j i}$ and $\mathbf{D}_{i j}$ are the connection parameters

$$
\begin{aligned}
T_{i j}\left(l_{i}\right) & =\left(x_{i}^{\prime}, y_{i}^{\prime}, s_{i}, \cos \left(\theta_{i}+\theta_{i j}\right), \sin \left(\theta_{i}+\theta_{i j}\right)\right), \\
T_{j i}\left(l_{j}\right) & =\left(x_{j}^{\prime}, y_{j}^{\prime}, s_{j}, \cos \left(\theta_{j}\right), \sin \left(\theta_{j}\right)\right), \\
\mathbf{D}_{i j} & =\operatorname{diag}\left(\sigma_{x}^{2}, \sigma_{y}^{2}, \sigma_{s}^{2}, 1 / k, 1 / k\right) .
\end{aligned}
$$

$T_{i j}\left(l_{i}\right)$ and $T_{j i}\left(l_{j}\right)$ are one-to-one mappings encoding the set of possible transformed locations.

This special form for the pairwise energies allows for matching algorithms that run in $\mathcal{O}\left(h^{\prime}\right)$, where h^{\prime} is the number of grid locations in a discretization of the space. This results in the time complexity $\mathcal{O}\left(h^{\prime} n\right)$ rather than $\mathcal{O}\left(h^{2} n\right)$.

IN2245 - Combinatorial Optimization in Computer Vision
9. Belief Propagation -29 / 38

IN2245 - Combinatorial Optimization in Computer Vision

The structure is encoded by a graph $G=(V, E)$, where $V=\left\{v_{1}, \ldots, v_{n}\right\}$ corresponds to n parts, and there is an edge $\left(v_{i}, v_{j}\right) \in E$ for each pair of connected parts v_{i} and v_{j}.
We want to minimize the following energy function

$$
L^{*} \in \underset{L}{\operatorname{argmin}}\left(\sum_{i=1}^{n} m_{i}\left(l_{i}\right)+\sum_{\left(v_{i}, v_{j}\right) \in E} d_{i j}\left(l_{i}, l_{j}\right)\right)
$$

where $m_{i}\left(l_{i}\right)$ measures the degree of mismatch when the part v_{i} is placed at location l_{i} and $d_{i j}\left(l_{i}, l_{j}\right)$ measures the degree of deformation of the model when part v_{i} is placed at location l_{i} and part v_{j} is placed at location l_{j}.
Note that MAP inference can be efficiently done by making use of Max-sum algorithm.

IN2245 - Combinatorial Optimization in Computer Vision 9. Belief Propagation $-26 / 38$

An image patch centered at some position is represented by a vector that collects all the responses of a set of Gaussian derivative filters of different orders, orientations and scales at that point. This vector is normalized and called the iconic index at that position.

The unary energies are defined as

$$
m_{i}\left(l_{i}\right)=-\ln \mathcal{N}\left(\alpha\left(l_{i}\right), \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}\right)
$$

where $\alpha\left(l_{i}\right)$ is the iconic index at location l_{i} in the image.
The parameters for each part (i.e. the mean vector $\boldsymbol{\mu}_{i}$ and the covariance matrix $\boldsymbol{\Sigma}_{i}$) can be obtained by maximum likelihood estimation for a given set of training samples.

IN2245 - Combinatorial Optimization in Computer Vision

Let \mathbf{R} be the matrix that performs a rotation of θ radians about the origin. Then,

$$
\left[\begin{array}{l}
x_{i}^{\prime} \\
y_{i}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
x_{i} \\
y_{i}
\end{array}\right]+s_{i} \mathbf{R}_{\theta_{i}}\left[\begin{array}{c}
x_{i j} \\
y_{i j}
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{l}
x_{j}^{\prime} \\
y_{j}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
x_{j} \\
y_{j}
\end{array}\right]+s_{j} \mathbf{R}_{\theta_{j}}\left[\begin{array}{l}
x_{j i} \\
y_{j i}
\end{array}\right],
$$

where $\left(x_{i}, y_{i}\right),\left(x_{j}, y_{j}\right)$ and $\left(x_{i j}, y_{i j}\right),\left(x_{j i}, y_{j i}\right)$ are the positions of the joints in image and local coordinates, respectively.
We assume the following joint distributions:

- $\mathcal{N}\left(x_{i}-x_{j}, \mathbf{0}, \sigma_{x}^{2}\right)$ and $\mathcal{N}\left(y_{i}-y_{j}, \mathbf{0}, \sigma_{y}^{2}\right)$ which measures the horizontal and vertical distances, respectively, between the observed joint positions.
■ $\mathcal{N}\left(s_{i}-s_{j}, 0, \sigma_{s}^{2}\right)$ measures the difference in foreshortening between the two parts.
- $\mathcal{M}\left(\theta_{i}-\theta_{j}, \theta_{i j}, k\right) \propto \exp \left(k \cos \left(\theta_{i}-\theta_{j}-\theta_{i j}\right)\right)$ measures the difference between the relative angle of the two parts and the ideal relative angle.
These parameters can be also obtained by maximum likelihood estimation.

MAP inference provides a single (best) prediction of the overall pose. The factor-to-varaible messages can be written as

$$
r_{F \rightarrow v_{i}}\left(l_{i}\right)=\max _{\substack{\left(l_{i}^{\prime}, l_{j}^{\prime}\right) \in \mathcal{Y}_{F}, l_{i}^{\prime}=l_{i}}}\left(\exp \left(-m_{i}\left(l_{i}^{\prime}\right)-d_{i j}\left(l_{i}^{\prime}, l_{j}^{\prime}\right)\right)+\sum_{k \in N(F) \backslash\{i\}} q_{v_{k} \rightarrow F}\left(l_{k}^{\prime}\right)\right) .
$$

\mathcal{Y} could be quite large ($\approx 1.5 M$ possible states), hence $\mathcal{Y}_{i} \times \mathcal{Y}_{j}$ is too big. However a special form of pairwise energies is used, so that a message can be calculated in $\mathcal{O}\left(\left|\mathcal{Y}_{i}\right|\right)$ time.

Message passing in cyclic graphs
 Sum-product alg. Max-sum alg. Human pose estimation
 Loopy belief propagation

When the graph has cycles, then there is no well-defined leaf-to-root order However, one can apply message passing on cyclic graphs, which results in loopy belief propagation.

. Initialize all messages as constant 1
2. Pass factor-to-variables and variables-to-factor messages alternately until convergence
3. Upon convergence, treat beliefs μ_{F} as approximate marginals

IN2245 - Combinatorial Optimization in Computer Vision \quad 9. Belief Propagation $-33 / 38$

The approximate marginals, i.e. beliefs, are computed as before but now a factor-specific normalization constant z_{F} is also used.

The factor marginals are given by

$$
\mu_{F}\left(y_{F}\right)=\frac{1}{z_{F}} \exp \left(-E_{F}\left(y_{F}\right)\right) \prod_{i \in N(F)} q_{Y_{i} \rightarrow F}\left(y_{i}\right),
$$

where the factor specific constant is given by

$$
z_{F}=\sum_{y_{F} \in \mathcal{Y}_{F}} \exp \left(-E_{F}\left(y_{F}\right)\right) \prod_{i \in N(F)} q_{Y_{i} \rightarrow F}\left(y_{i}\right) .
$$

if:t Remarks on loopy belief propagation

 Sum-product alg. Max-sum alg. Human pose estimation Loopy belief propagation

Loopy belief propagation is very popular, but has some problems:

- It might not converge (e.g., it can oscillate).
- Even if it does, the computed probabilities are only approximate.
- If there is a single cycle only in the graph, then it converges.

The factor-to-variable messages $r_{F \rightarrow Y_{i}}$ remain well-defined and are computed as before.

$$
r_{F \rightarrow Y_{i}}\left(y_{i}\right)=\sum_{\substack{y_{F}^{\prime} \in \mathcal{Y}_{F}, y_{i}^{\prime}=y_{i}}}\left(\exp \left(-E_{F}\left(y_{F}^{\prime}\right)\right) \prod_{j \in N(F) \backslash\{i\}} q_{Y_{j} \rightarrow F}\left(y_{j}^{\prime}\right)\right)
$$

The variable-to-factor messages are normalized at every iteration as follows:

$$
q_{Y_{i} \rightarrow F}\left(y_{i}\right)=\frac{\prod_{F^{\prime} \in M(i) \backslash\{F\}} r_{F^{\prime} \rightarrow Y_{i}}\left(y_{i}\right)}{\sum_{y_{i}^{\prime} \in \mathcal{Y}_{i}} \prod_{F^{\prime} \in M(i) \backslash\{F\}} r_{F^{\prime} \rightarrow Y_{i}}\left(y_{i}^{\prime}\right)}
$$

In case of tree structured graphs, in the sum-product algorithm these normalization constants are equal to 1 , since the marginal distributions, calculated in each iteration, are exact.

IN2245 - Combinatorial Optimization in Computer Vision

In addition to the factor marginals the algorithm also computes the variable marginals in a similar fashion.

$$
\mu_{i}\left(y_{i}\right)=\frac{1}{z_{i}} \prod_{F^{\prime} \in M(i)} r_{F^{\prime} \rightarrow Y_{i}}\left(y_{i}\right)
$$

where the normalizing constant is given by

$$
z_{i}=\sum_{y_{i} \in \mathcal{Y}_{i}} \prod_{F^{\prime} \in M(i)} r_{F^{\prime} \rightarrow Y_{i}}\left(y_{i}\right)
$$

Since the local normalization constant z_{F} differs at each factor for loopy belief propagation, the exact value of the normalizing constant Z cannot be directly calculated. Instead, an approximation to the \log partition function can be computed.

IN2245 - Combinatorial Optimization in Computer Vision

- Sebastian Nowozin and Christoph H. Lampert. Structured Prediction and Learning in Computer Vision. In Foundations and Trends in Computer Graphics and Vision, Volume 6, Number 3-4. Note: Chapter 3.
■ Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. The MIT Press, 2009. Note: Chapters 9,10 and 13.

■ Christopher Bishop. Pattern Recognition and Machine Learning. Springer, 2006. Note: Chapter 8.

- Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Network of Plausible Inference. Morgan Kaufmann, 1988.
- Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Pictorial Structures for Object Recognition. International Journal of Computer Vision, Vol. 61(1), pp. 55-79, January 2005.

