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Inference means the procedure to estimate the probability distribution, encoded by
a graphical model, for a given data.

Assume we are given a factor graph and the observation x.

■ Maximum A Posteriori (MAP) inference: find the state y˚ P Y of
maximum probability,

y˚ P argmax
yPY

ppY “ y | xq “ argmin
yPY

Epy;xq .

■ Probabilistic inference: find the value of the log partition function and the
marginal distributions for each factor,

logZpxq “ log
ÿ

yPY
expp´Epy;xqq ,

µF pyF q “ ppYF “ yF | xq @F P F ,@yF P YF .

Sum-product algorithm
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Inference on chains

Sum-product alg. Max-sum alg. Human pose estimation Loopy belief propagation

IN2245 - Combinatorial Optimization in Computer Vision 9. Belief Propagation – 5 / 38

Assume that we are given the following factor graph and a corresponding energy
function Epyq, where Y “ Yi ˆ Yj ˆ Yk ˆ Yl.

Yi

A

Yj

B

Yk

C

Yl

We want to compute ppyq for any y P Y by making use of the factorization

ppyq “ 1

Z
expp´Epyqq .

Problem: we also need to calculate the partition function

Z “
ÿ

yPY
expp´Epyqq “

ÿ

yiPYi

ÿ

yjPYj

ÿ

ykPYk

ÿ

ylPYl

expp´Epyi, yj , yk, ylqq ,

which looks expensive (the sum has |Yi| ¨ |Yj | ¨ |Yk| ¨ |Yl| terms).

Inference on chains (cont.)
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Yi

A

Yj

B
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C

Yl

We can expand the partition function as

Z “
ÿ

yiPYi

ÿ

yjPYj

ÿ

ykPYk

ÿ

ylPYl

expp´Epyi, yj , yk, ylqq

“
ÿ

yiPYi

ÿ

yjPYj

ÿ

ykPYk

ÿ

ylPYl

exp
´

´ `
EApyi, yjq ` EBpyj , ykq ` ECpyk, ylq

˘¯

“
ÿ

yiPYi

ÿ

yjPYj

ÿ

ykPYk

ÿ

ylPYl

expp´EApyi, yjqq expp´EBpyj , ykqq expp´ECpyk, ylqq

“
ÿ

yiPYi

ÿ

yjPYj

expp´EApyi, yjqq
ÿ

ykPYk

expp´EBpyj , ykqq
ÿ

ylPYl

expp´ECpyk, ylqq .

Inference on chains (cont.)
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Yi

A

Yj

B

Yk

C

Yl

rCÑYk
P RYkrBÑYj P RYjrAÑYi P RYi

Note that we can successively eliminate variables, that is

Z “
ÿ

yiPYi

ÿ

yjPYj

expp´EApyi, yjqq
ÿ

ykPYk

expp´EBpyj , ykqq
ÿ

ylPYl

expp´ECpyk, ylqq
looooooooooooomooooooooooooon

rCÑYk
pykq

“
ÿ

yiPYi

ÿ

yjPYj

expp´EApyi, yjqq
ÿ

ykPYk

expp´EBpyj , ykqqrCÑYk
pykq

looooooooooooooooooooomooooooooooooooooooooon
rBÑYj

pyjq

“
ÿ

yiPYi

ÿ

yjPYj

expp´EApyi, yjqqrBÑYjpyjq
loooooooooooooooooooomoooooooooooooooooooon

rAÑYi
pyiq

“
ÿ

yiPYi

rAÑYipyiq .

Inference on trees
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Now we are assuming a tree-structured factor graph and applying the same
elimination procedure as before.

Yi

A

Yj

B

Yk

C

Yl

rB
ÑY j

py j
q

rBÑYj
pyjq

qYjÑApyjq

Z “
ÿ

yiPYi

ÿ

yjPYj

expp´EApyi, yjqq
ÿ

ykPYk

expp´EBpyj , ykqq
loooooooooooooomoooooooooooooon

rBÑYj
pyjq

ÿ

ylPYl

expp´ECpyj, ylqq
looooooooooooomooooooooooooon

rCÑYj
pyjq

“
ÿ

yiPYi

ÿ

yjPYj

expp´EApyi, yjqq rBÑYj pyjqrCÑYj pyjqloooooooooooomoooooooooooon
qYjÑApyjq

“
ÿ

yiPYi

ÿ

yjPYj

expp´EApyi, yjqqqYjÑApyjq



Inference on trees (cont.)
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Now we are assuming a tree-structured factor graph and applying the same
elimination procedure as before.

Yi

A

Yj

B

Yk

C

Yl

rB
ÑY j

py j
q

rBÑYj
pyjq

qYjÑApyjqrAÑYi
pyiq

Z “
ÿ

yiPYi

ÿ

yjPYj

expp´EApyi, yjqqqYjÑApyjq
loooooooooooooooooooomoooooooooooooooooooon

rAÑYi
pyiq

“
ÿ

yiPYi

rAÑYipyiq .

Messages
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Message: pair of vectors at each factor graph edge pi, F q P E .

F

Yi

. . .

. . .

. . .

. . .

rFÑYi

qYiÑF

1. Variable-to-factor message qYiÑF P RYi is
given by

qYiÑF pyiq “
ź

F 1PMpiqztF u
rF 1ÑYi

pyiq ,

where Mpiq “ tF P F : pi, F q P Eu denotes
the set of factors adjacent to Yi.

A

Yi

B

..
.

F

rAÑYi

rBÑYi

qYiÑF

2. Factor-to-variable message: rFÑYi P RYi .

Messages (cont.)
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2. Factor-to-variable message rFÑYi P RYi is given by

rFÑYipyiq “
ÿ

y1
F PYF ,
y1
i“yi

¨
˝expp´EF py1

F qq
ź

lPNpF qztiu
qYlÑF py1

lq
˛
‚ ,

where NpF q “ ti P V : pi, F q P Eu denotes the set of variables adjacent to F .

Yj

F
Yk

..
.

Yi

qYjÑF

qYkÑF

rFÑYi

Message scheduling
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One can remark that the message updates depend on each other.

rFÑYipyiq “
ÿ

y1
F PYF ,
y1
i“yi

¨
˝expp´EF py1

F qq
ź

lPNpF qztiu
qYlÑF py1

lq
˛
‚ (1)

qYiÑF pyiq “
ź

F 1PMpiqztF u
rF 1ÑYi

pyiq (2)

The only messages that do not depend on previous computation are the following.

■ The factor-to-variable messages in which no other variable is adjacent to the
factor; then the product in (1) will be empty.

■ The variable-to-factor messages in which no other factor is adjacent to the
variable; then the product in (2) is empty and the message will be zero.

Message scheduling on trees
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For tree-structured factor graphs there always exist at least one such message that
can be computed initially, hence all the dependencies can be resolved.

1. Select one variable node as root of the tree (e.g., Ym)
2. Compute leaf-to-root messages (e.g., by applying depth-first-search)
3. Compute root-to-leaf messages (reverse order as before)

Inference result: Z and the marginals
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A

Yi

B C

...

...

... ... ...

rAÑYi

rBÑYi rCÑYi

Yi

F

Yj Yk

...

... ... ...

qYiÑF

qYjÑF qYkÑF

Partition function is evaluated at the root node

Z “
ÿ

yiPYi

ź

FPMpiq
rFÑYipyiq .

The marginal distribution for each factor can be computed as

µF pyF q “ ppyF q “ 1

Z
expp´EF pyF qq

ź

iPNpF q
qYiÑF pyiq .

Optimality and complexity
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The ordering ĺ over the vertex set V of a directed acyclic graph is called
topological ordering, if for each s P V , we have t ĺ s for all t P πpsq, where πpsq
denotes the set of all parents of node s.

Assume a tree-structured factor graph. If the messages are computed in a
topological order for the sum-product algorithm, then it converges after 2|V |
iterations and provides the exact marginals.

If |Yi| ď m for all i P V , then the complexity of the algorithm Op|V | ¨ m2q.
Reminder: Assuming f, g : R Ñ R, the notation fpxq “ Opgpxqq means that there
exists C ą 0 and x0 P R such that |fpxq| ď C|gpxq| for all x ą x0.

Max-sum algorithm
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Message passing for MAP inference
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y˚ P argmax
yPY

ppyq “ argmax
yPY

1

Z
p̃pyq “ argmax

yPY
p̃pyq .

Similar to the sum-product algorithm one can obtain the so-called max-sum
algorithm to solve the above maximization.

By applying the ln function, we have

lnmax
yPY p̃pyq “max

yPY ln p̃pyq
“max

yPY ln
ź

FPF
expp´EF pyF qq

“max
yPY

ÿ

FPF
´EF pyF q .

Messages
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The messages become as follows

qYiÑF pyiq “
ÿ

F 1PMpiqztF u
rF 1ÑYi

pyiq

rFÑYipyiq “ max
y1
F PYF ,
y1
i“yi

¨
˝´EF py1

F q `
ÿ

lPNpF qztiu
qYlÑF py1

lq
˛
‚ .

The max-sum algorithm provides exact MAP inference for tree-structured factor
graphs. In general, for graphs with cycles there is no guarantee for convergence.

Choosing an optimal state
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First we define the singleton max-marginal as

vipyiq “ max
y1PY,y1

i“yi
ppy1q .

The following back-tracking algorithm is applied for choosing an optimal y˚.
1. Initialize the procedure at the root node (Yi) by choosing any

yi̊ P argmaxyiPYi
vipyiq and set I “ tiu.

2. In a topological order, for each j P V ztiu choose a configuration yj̊ at the
node Yj such that

yj̊ P argmax
yjPYj

max
y1PY,

y1
j“yj ,@iPI y1

i“y˚
i

ppy1q ,

and set I “ I Y tju.

Sum-product and Max-sum comparison
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■ Sum-product algorithm

qYiÑF pyiq “
ź

F 1PMpiqztF u
rF 1ÑYi

pyiq

rFÑYipyiq “
ÿ

y1
F PYF ,
y1
i“yi

¨
˝expp´EF py1

F qq
ź

lPNpF qztiu
qYlÑF py1

lq
˛
‚

■ Max-sum algorithm

qYiÑF pyiq “
ÿ

F 1PMpiqztF u
rF 1ÑYi

pyiq

rFÑYipyiq “ max
y1
F PYF ,
y1
i“yi

¨
˝´EF py1

F q `
ÿ

lPNpF qztiu
qYlÑF py1

lq
˛
‚

Example ˚
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Let us consider the following factor graph with binary variables:

Yi

A

Yj

Yk

B

C

Yl

EAp0, yj , ykq
yk
0 1

yj
0 1 0
1 0 1

EAp1, yj , ykq
yk
0 1

yj
0 0 -1
1 0 0

EBpykq
yk

0 1
1 0.5

ECpyk, ylq
yl

0 1

yk
0 0 0.5
1 0.5 0

Let us chose the node Yi as root. We calculate the messages for the max-sum
algorithm from leaf–to–root direction in a topological order as follows.

1. qYlÑCp0q “ qYlÑCp1q “ 0
2. rCÑYk

p0q “ maxylPt0,1u t´Ecp0, ylq ` qYlÑCp0qu “ maxylPt0,1u ´Ecp0, ylq “ 0
rCÑYk

p1q “ maxylPt0,1u t´Ecp1, ylq ` qYlÑCp1qu “ maxylPt0,1u ´Ecp1, ylq “ 0
3. rBÑYk

p0q “ ´1
rBÑYk

p1q “ ´0.5
4. qYkÑAp0q “ rBÑYk

p0q ` rCÑYk
p0q “ ´1 ` 0 “ ´1

qYkÑAp1q “ rBÑYk
p1q ` rCÑYk

p1q “ ´0.5 ` 0 “ ´0.5

Example (cont.) ˚
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5. qYjÑAp0q “ qYjÑAp1q “ 0
6. rAÑYip0q “ maxyj,ykPt0,1ut´EAp0, yj , ykq ` qYjÑApyjq ` qYkÑApykqu “ ´0.5

rAÑYip1q “ maxyj,ykPt0,1ut´EAp1, yj , ykq ` qYjÑApyjq ` qYkÑApykqu “ 0.5

In order to calculate the maximal state y˚ we apply back-tracking

1. yi̊ P argmaxyiPt0,1u rAÑYipyiq “ t1u
2. yj̊ P argmaxyj maxyj,ykPt0,1ut´EAp1, yj , ykq ` qYiÑAp1q ` qYkÑApykqu “ t0u
3. yk̊ P argmax

ykPt0,1u
trAÑYk

p1, 0, ykq ` rBÑYk
pykq ` rCÑYk

pykqu

“ argmax
ykPt0,1u

t´EAp1, 0, ykq ` rBÑYk
pykqu “ t1u

4. yl̊ P argmaxylPt0,1ut´ECpyk, 1q ` qYkÑCp1qu “ t0u
Therefore, the optimal state y˚ “ p1, 0, 1, 0q.

Human pose estimation
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The goal is to recognize an articulated object with joints
connecting different parts, here it is a human body.

An object is composed of a number of rigid parts. Each
part is modeled as a rectangle parameterized by
px, y, s, θq, where
■ px, yq means the center of the rectangle,
■ s P r0, 1s is a scaling factor, and
■ the orientation is given by θ.

In overall, we have a four-dimensional pose space.

We denote the locations of two (connected) parts by
li “ pxi, yi, si, θiq and lj “ pxj, yj , sj , θjq, respectively.



The model (cont.)
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An object (e.g., human body) is given by a configuration L “ pl1, . . . , lnq, where li
specifies the location of part vi. The connections encode generic relationships such
as “close to”, “to the left of”, or more precise geometrical constraints such as ideal
joint angles.

■ The location of a joint between vi and vj is specified by two points pxij, yijq
and pxji, yjiq.

■ The relative orientation is given by θij , which is the difference between the
orientation of the two parts.

In principle, all parts depend on each other, however, tree structured model can be
considered for an articulated pose.

Graphical representation
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The structure is encoded by a graph G “ pV,Eq, where V “ tv1, . . . , vnu
corresponds to n parts, and there is an edge pvi, vjq P E for each pair of connected
parts vi and vj .

We want to minimize the following energy function

L˚ P argmin
L

¨
˝

nÿ

i“1

mipliq `
ÿ

pvi,vjqPE
dijpli, ljq

˛
‚ ,

where mipliq measures the degree of mismatch when
the part vi is placed at location li and dijpli, ljq
measures the degree of deformation of the model
when part vi is placed at location li and part vj is
placed at location lj .

. . .

Ytop

Yhead

YtorsoYrarm

Yrhnd

Yrleg

Yrfoot Ylfoot

Ylleg

Ylarm

Ylhnd

X

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

F
(1)

top

F
(2)

top,head

Note that MAP inference can be efficiently done by making use of Max-sum
algorithm.

Image filters ˚
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The image filtering is a technique for modifying or enhancing an image (e.g.,
smoothing, edge detection, sharpening). For example, the smoothing of an input
signal means of removing (or filtering out) high-frequency components.

A digital image can be considered as a two dimensional (discretized) signal that is
f : Z2 Ñ ZD. For example D “ 3 for color images.

Here we consider linear filtering in which the value of an output pixel is a linear
combination of the values of the pixels in the input pixel’s neighborhood. In a
spatially discrete setting, a linear filter is a weighted sum:

gpx0, y0q “ rf ˚ wspx0, y0q “
ÿ

m,n

wpm,nqfpx0 ´ m, y0 ´ nq

which is also called discrete convolution of f and w. In practice this summation
extends over a certain neighborhood. The matrix of weights wpm,nq is called a
mask.
(For more details please refer to the course of Variational Methods for Computer Vision.)

Unary energies ˚
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An image patch centered at some position is represented by a vector that collects
all the responses of a set of Gaussian derivative filters of different orders,
orientations and scales at that point. This vector is normalized and called the
iconic index at that position.

The unary energies are defined as

mipliq “ ´ lnN pαpliq,µi,Σiq ,
where αpliq is the iconic index at location li in the image.

The parameters for each part (i.e. the mean vector µi and the covariance matrix
Σi) can be obtained by maximum likelihood estimation for a given set of training
samples.

Pairwise energies ˚
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The pairwise energies have a special form as follows.

dijpli, ljq “ ´ lnN pTjipljq ´ Tijpliq,0,Dijq ,
where where Tij , Tji and Dij are the connection parameters

Tijpliq “px1
i, y

1
i, si, cospθi ` θijq, sinpθi ` θijqq,

Tjipljq “px1
j, y

1
j , sj , cospθjq, sinpθjqq,

Dij “diagpσ2
x, σ

2
y , σ

2
s , 1{k, 1{kq .

Tijpliq and Tjipljq are one-to-one mappings encoding the set of possible
transformed locations.

This special form for the pairwise energies allows for matching algorithms that run
in Oph1q, where h1 is the number of grid locations in a discretization of the space.
This results in the time complexity Oph1nq rather than Oph2nq.

Pairwise energies (cont.) ˚
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Let R be the matrix that performs a rotation of θ radians about the origin. Then,

„
x1
i

y1
i


“

„
xi
yi


` siRθi

„
xij
yij


and

„
x1
j

y1
j


“

„
xj
yj


` sjRθj

„
xji
yji


,

where pxi, yiq, pxj , yjq and pxij , yijq, pxji, yjiq are the positions of the joints in
image and local coordinates, respectively.
We assume the following joint distributions:

■ N pxi ´ xj,0, σ
2
xq and N pyi ´ yj ,0, σ

2
yq which measures the horizontal and

vertical distances, respectively, between the observed joint positions.
■ N psi ´ sj , 0, σ

2
sq measures the difference in foreshortening between the two

parts.
■ Mpθi ´ θj , θij , kq9 exppk cospθi ´ θj ´ θijqq measures the difference between

the relative angle of the two parts and the ideal relative angle.

These parameters can be also obtained by maximum likelihood estimation.

Inference
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MAP inference provides a single (best) prediction of the overall pose. The
factor–to–varaible messages can be written as

rFÑvipliq “ max
pl1i,l1jqPYF ,

l1i“li

¨
˝expp´mipl1iq ´ dijpl1i, l1jqq `

ÿ

kPNpF qztiu
qvkÑF pl1kq

˛
‚ .

Y could be quite large (« 1.5M possible states), hence Yi ˆ Yj is too big.
However a special form of pairwise energies is used, so that a message can be
calculated in Op|Yi|q time.

Loopy belief propagation
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Message passing in cyclic graphs
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When the graph has cycles, then there is no well-defined leaf–to–root order.
However, one can apply message passing on cyclic graphs, which results in loopy
belief propagation.

Yi Yj Yk

Yl Ym Yn

Yo Yp Yq

A B

F G

K L

C D E

H I J

Yi Yj Yk

Yl Ym Yn

Yo Yp Yq

A B

F G

K L

C D E

H I J

1. Initialize all messages as constant 1
2. Pass factor–to–variables and variables–to–factor messages alternately until

convergence
3. Upon convergence, treat beliefs µF as approximate marginals

Messages
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The factor–to–variable messages rFÑYi remain well-defined and are computed as
before.

rFÑYipyiq “
ÿ

y1
F PYF ,
y1
i“yi

¨
˝expp´EF py1

F qq
ź

jPNpF qztiu
qYjÑF py1

jq
˛
‚

The variable–to–factor messages are normalized at every iteration as follows:

qYiÑF pyiq “
ś

F 1PMpiqztF u rF 1ÑYi
pyiqř

yjPYj

ś
F 1PMpjqztF u rF 1ÑYj

pyjq .

In case of tree structured graphs, in the sum–product algorithm these
normalization constants are equal to 1, since the marginal distributions, calculated
in each iteration, are exact.

Beliefs
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The approximate marginals, i.e. beliefs, are computed as before but now a
factor-specific normalization constant zF is also used.

The factor marginals are given by

µF pyF q “ 1

zF
expp´EF pyF qq

ź

iPNpF q
qYiÑF pyiq ,

where the factor specific constant is given by

zF “
ÿ

yF PYF

expp´EF pyF qq
ź

iPNpF q
qYiÑF pyiq .

Beliefs (cont.)
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In addition to the factor marginals the algorithm also computes the variable
marginals in a similar fashion.

µipyiq “ 1

zi

ź

F 1PMpiq
rF 1ÑYi

pyiq ,

where the normalizing constant is given by

zi “
ÿ

yiPYi

ź

F 1PMpiq
rF 1ÑYi

pyiq .

Since the local normalization constant zF differs at each factor for loopy belief
propagation, the exact value of the normalizing constant Z cannot be directly
calculated. Instead, an approximation to the log partition function can be
computed.

Remarks on loopy belief propagation
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Loopy belief propagation is very popular, but has some problems:

■ It might not converge (e.g., it can oscillate).
■ Even if it does, the computed probabilities are only approximate.
■ If there is a single cycle only in the graph, then it converges.
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