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9. Belief Propagation 2 /38

Inference revisited
Inference means the procedure to estimate the probability distribution, encoded by a graphical model, for a given data.
Assume we are given a factor graph and the observation .

B Maximum A Posteriori (MAP) inference: find the state y* € ) of maximum probability,

y* € argmaxp(Y =y | x) = argmin E(y; z) .
yey yey

B Probabilistic inference: find the value of the log partition function and the marginal distributions for each factor,

log Z(z) = log > exp(—E(y; 7)) ,
yey

uF(yF) Zp(YF = Yr | :L’) VF € ]:,Vyp € yF .
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Sum-product alg. 4/ 38

Sum-product algorithm 4 / 38

Inference on chains

Assume that we are given the following factor graph and a corresponding energy function E(y), where Y = V; x V; x Vi x Y.
A B C

We want to compute p(y) for any y € Y by making use of the factorization

1

p(y) = 7 exp(—E(y)) -

Problem: we also need to calculate the partition function

Z = Z exp(—E(y)) = Z Z Z Z exp(—E(Yi, Yj» Yr> Y1)

yey Yi€Vi Y;€YV5 y€Vk YW

which looks expensive (the sum has [V;| - |V;] - |Vi| - |Vi| terms).
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Inference on chains (cont.)

OO0

We can expand the partition function as

7 = Z Z Z ZeXP(—E(yz‘,yjayk,yz))

Yi€Yi Y;€Y; Y€EVk YIEV

-2 2 X ZeXP(‘(EA(yi’yj)+EB(yj,yk)+Ec(yk,yz))>

Yi€Yi Y;€V; Y€V YIEV

= Z Z Z ZeXP(—EA(Z/z‘,Z/j))GXP(—EB(yj,yk))eXp(—Ec(yk,yz))

Yi€Yi Y€V Y€V YIEV

= > D) exp(—Ealyi,y) Y, exp(—En(y;uk)) Y, exp(—Eo(y ) -

Yi€Vi Y;€Y; YE€EVk YEV
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Inference on chains (cont.)

TA-Y; € RYi 7‘Bay e RYi ro Hh c RV
e~ —

@gug\y/'y

Note that we can successively eliminate variables, that is

Z=> > exp(—Ea(yi,y;)) Y, exp(—Ep(yj,ur)) Y, exp(—Ec(yr,u))

Q

Yi€Yi y;€Y; YE€EVk zeyz
ra—vy, (k)
= >0 > exp(=Ba(i,y;) Y, exp(=Ep(y;,y))re v, (k)
Yi€Vi Y;€Y; Yr€Vk ,
7By (Y;)
= >0 > exp(=Bali,y;))re-y; () = X, rasvi(yi) -
Yi€Vi y]ey] Yi€Yi

~—

ra-y; (Yi)
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Inference on trees

Now we are assuming a tree-structured factor graph and applying the same elimination procedure aghefore.
\}}

)

&
s
,(@
ay;—A (yj) /

THA»Yj(y])
Z =3 > exp(—Ea(yi,y;)) Y, exp(—Ep(yj,m)) Y, exp(—Ec(y;w))
Yi€Yi y;€Y;5 gkeyk YIEV,
rB-v; (Y;) ro-v; (Yj)

= Z Z exp(—Ea(yi, yj)) rB-y; (Yj)re—y; (v;)
Yi€Yi Y;€Y; ~ -~

av;—a(v;)

- Z Z exp(—Ea(yi, yj))av,—a(y))

Yi€YVi Y;€Y;
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Inference on trees (cont.)
Now we are assuming a tree-structured factor graph and applying the same ellmmatgon procedure a

O
A
y(@
rA-yY; (Yi) qY}*’A(y]') /
<

@g@-c@

TB-Y; (Yj

Z = Z Z —E4( Z'JZaZ/J))QY —>A(U])

yveyz y]eyj
.

efore.
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Messages

Message: pair of vectors at each factor graph edge (i, F') € £.

1. Variable-to-factor message qy, . € RYi is given by

wvi-rw) =[]  reovi),
FreM(i)\(F)

where M (i) = {F € F : (i, F) € £} denotes the set of factors adjacent to Y;.

2. Factor-to-variable message: 75y, € RY:.
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Messages (cont.)

2. Factor-to-variable message rr_y; € RY is given by

resv(w) = D, exp(=Er(yr) []  avier@) |,
oV, IeN(F)\(i}
Yi=Yi

where N(F) = {i eV : (i, F) € £} denotes the set of variables adjacent to F'.
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Message scheduling

One can remark that the message updates depend on each other.

resvi(y) = Y, | exp(—Er(yk))
Yr€VF,
Yi=Yi

wviorw) = ]  reov)

FreM (i)\{F'}

The only messages that do not depend on previous computation are the following.

B The factor-to-variable messages in which no other variable is adjacent to the factor; then the product in (1) will be empty.
B The variable-to-factor messages in which no other factor is adjacent to the variable; then the product in (2) is empty and the message will be one.

[

leN(F)\{:}

(1)

(IYIﬁF(U;)

()
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Message scheduling on trees

For tree-structured factor graphs there always exist at least one such message that can be computed initially, hence all the dependencies can be resolved.

1. Select one variable node as root of the tree (e.g., Yy;,)
2. Compute leaf-to-root messages (e.g., by applying depth-first-search)
3. Compute root-to-leaf messages (reverse order as before)
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Inference result: Z and the marginals

Partition function is evaluated at the root node

Z=) H rr-Y; (i) -

yi€YVi FeM (i)

The marginal distribution for each factor can be computed as

pr(yr) = plyr) = %exp(—EF(yF)) [T aviery)
1EN(F)
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Optimality and complexity *

The ordering < over the vertex set V' of a directed acyclic graph is called topological ordering, if for each s € V, we have t < s for all t € 7(s), where 7(s)
denotes the set of all parents of node s.

Assume a tree-structured factor graph. If the messages are computed in a topological order for the sum-product algorithm, then it converges after 2|V|
iterations and provides the exact marginals.

If |Vi| < m for all i € V, then the complexity of the algorithm O(|V|- m’), where K = maxpcx |N(F)|.

Reminder: Assuming f,g : R — R, the notation f(z) = O(g(x)) means that there exists C' > 0 and xy € R such that |f(z)| < C|g(x)]| for all z > xy.
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Max-sum alg. 16 / 38

Max-sum algorithm 16 / 38

Message passing for MAP inference
1
y* € argmax p(y) = argmax —p(y) = argmax p(y) .
yey yey Z yey

Similar to the sum-product algorithm one can obtain the so-called max-sum algorithm to solve the above maximization.

By applying the In function, we have
In max p =maxInp
ey p(y) ey p(y)

— max] B
maxin | | exp(=Er(yr))

FeF
= max —FEr(yr) .
vey FeF
IN2245 - Combinatorial Optimization in Computer Vision 9. Belief Propagation — 17 / 38
Messages
The messages become as follows
wvisry) = Y, Ty (v)

FreM(i)\{F}

reoy,(yi) = max | —Ep(yp)+ Y, av—r)

/
y;,ej; " leN (F)\ {3}

The max-sum algorithm provides exact MAP inference for tree-structured factor graphs. In general, for graphs with cycles there is no guarantee for
convergence.
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Choosing an optimal state

First we define the singleton max-marginal as

vilye) = max p(y).-

The following back-tracking algorithm is applied for choosing an optimal y*.

1. Initialize the procedure at the root node (Y;) by choosing any y € argmax, ¢y, vi(y;) and set T = {i}.

2. In a topological order, for each j € V\{i} choose a configuration y}" at the node Y} such that

y; € argmax max p(y) ,

/
Y€V Yy €y7
yi=y;,Viel y;=y}

andset Z =7 u {j}.

IN2245 - Combinatorial Optimization in Computer Vision
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Sum-product and Max-sum comparison

B Sum-product algorithm

B Max-sum algorithm

wvi-rw) =[] reov)
FleM)\(F})

resy (W) = ), | exp(=Er(yp)) || avi-r()
YEVF, leN (F)\{i}

Yi=Yi

wvirw) = Y, rrovi(y)
FreM(i)\{F}

reoyi(yi) = max | —Er(yp)+ ), avior(y)

YpEVE, N
i) leN (F)\{i}
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Example *

Let us consider the following factor graph with binary variables:

Let us chose the node Y; as root. We calculate the messages for the max-sum algorithm from leaf—to—root direction in a topological order as follows.

L. qy,-c(0) =qy,—c(1) =0

Ea(0,y5,yx) Fa(lLyj,yx) En(ys) Ec(yr, 1)
Yk Yk Yk Ui
01 01 ol 1 0 1
0[10 0l0-1] | 1|05 0] 0 05
Yitlo1||¥%1]lo0o0 Y* 1105 0

2 rC-Y; (0) = MaXy,e(0,1} { E (0 ) + qYlﬁc(O)} = MaXy, (0,1} — (0 yl) 0
chyk(l) maxyle{o 1} { Ec(l Ui ) + (JYZ_>C(1)} = IMaXye{0,1} —FE (1 yl) =0
3. rpoy,(0) =
'B-Y, (1) —0 5)
4. qy,—»a(0) =rpoy, (0) + rec—y, (0) = =14+ 0= —1
qu_)A(l) = ’I”B_>yk(1) + ’I”C_,yk(l) =—-05+0=-0.5

IN2245 - Combinatorial Optimization in Computer Vision
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Example (cont.) *

5. qy;-»4(0) =qv,-a(1) =0
6. TA-Y; (0) = maij,yke{O,l}{_EA(Ov Yjs yk) + qY]—>A(yj) + qu—’A(yk)
rA-y; (1) = maxy; . cio1{—Ea(lyj, uk) + av;-a(Y;) + avi,—a(yr)

=—-0.5
=0.5

[SAN

In order to calculate the maximal state y* we apply back-tracking
1. yfe argmax,, c(o 1} rasy,(yi) = {1}
2. yj € argmax, maxy;, 014~ Ea(l, 95, yk) + avia(l) + gvi—alye)} = {0}

3. y;{;k € arg?la?{rAHYk (]-7 0) yk‘) + 'B-Y, (?/k) + rCc-Y, (yk‘)}
YKE 0,1

=argmax{—FE4(1,0,yx) + 3oy, (yi)} = {1}
ykE{O,l}

4. yf € argmax, ¢ 11{—Ec(yk, 1) + av,~c(1)} = {0}
Therefore, the optimal state y* = (1,0, 1,0).

IN2245 - Combinatorial Optimization in Computer Vision
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Human pose estimation 23 / 38

The model

The goal is to recognize an articulated object with joints connecting different parts, here it is a human body.

An object is composed of a number of rigid parts. Each part is modeled as a rectangle parameterized by
(z,y,s,0), where

B (z,y) means the center of the rectangle,
B se [0,1] is a scaling factor, and
B the orientation is given by 6.

In overall, we have a four-dimensional pose space.

We denote the locations of two (connected) parts by l; = (x;, i, si,0;) and I = (z;,y;,s;,0;), respectively.
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The model (cont.)

An object (e.g., human body) is given by a configuration L = (,...,l,), where [; specifies the location of part v;. The connections encode generic
relationships such as ‘“close to”, “to the left of”, or more precise geometrical constraints such as ideal joint angles.

B The location of a joint between v; and v; is specified by two points (2,5, ¥i;) and (s, y;i)-
B The relative orientation is given by 0;;, which is the difference between the orientation of the two parts.

o]

In principle, all parts depend on each other, however, tree structured model can be considered for an articulated pose.
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Graphical representation

connected parts v; and v;.

We want to minimize the following energy function

L* e argmin Z mz(lz) + Z dij(li,lj) )
L i=1 (vi,vj)eE

where m;(l;) measures the degree of mismatch when the part v; is placed at location I; and d;;(1;, ;)
measures the degree of deformation of the model when part v; is placed at location /; and part v; is
placed at location ;.

Note that MAP inference can be efficiently done by making use of Max-sum algorithm.

The structure is encoded by a graph G' = (V, E), where V' = {v1,...,v,} corresponds to n parts, and there is an edge (v;,v;) € E for each pair of

(1)
Ftop

(2)
top,head

IN2245 - Combinatorial Optimization in Computer Vision
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Image filters *

The image filtering is a technique for modifying or enhancing an image (e.g., smoothing, edge detection, sharpening). For example, the smoothing of an
input signal means of removing (or filtering out) high-frequency components.

A digital image can be considered as a two dimensional (discretized) signal that is f : Z? — ZP. For example D = 3 for color images.

Here we consider linear filtering in which the value of an output pixel is a linear combination of the values of the pixels in the input pixel's neighborhood.
In a spatially discrete setting, a linear filter is a weighted sum:

9(w0,90) = [f *w](wo,90) = Y w(m,n) f(zo — m,yo —n)

m,n

which is also called discrete convolution of f and w. In practice this summation extends over a certain neighborhood. The matrix of weights w(m,n) is
called a mask.
(For more details please refer to the course of Variational Methods for Computer Vision.)
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Unary energies *

An image patch centered at some position is represented by a vector that collects all the responses of a set of Gaussian derivative filters of different orders,
orientations and scales at that point. This vector is normalized and called the iconic index at that position.

The unary energies are defined as

ml(ll) = _lnN(a(li)?uia 21) )
where «a(l;) is the iconic index at location [; in the image.

The parameters for each part (i.e. the mean vector pu; and the covariance matrix X;) can be obtained by maximum likelihood estimation for a given set of
training samples.
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Pairwise energies *
The pairwise energies have a special form as follows.
dij(li, ;) = = In N (Tji(l;) — T35(l:), 0, Dyj)
where where T;;, T}; and D;; are the connection parameters
Tij(li) =(5, yi» si, cos(0; + 0ij),sin(0; + 0;5)),
Tji(ly) = (a7, ;. 55, cos(0;),sin(6;)),
D;; =diag(o7,0,,02,1/k, 1/k) .

Tij(1;) and Tj;(l;) are one-to-one mappings encoding the set of possible transformed locations.

This special form for the pairwise energies allows for matching algorithms that run in O(R’), where h’ is the number of grid locations in a discretization of
the space. This results in the time complexity O(h'n) rather than O(h?n).
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Pairwise energies (cont.) *

Let R be the matrix that performs a rotation of 8 radians about the origin. Then,

Y; Yi Yij Yy Yj Yji
where (4, ), (xj,y;) and (245, yi;). (i, y;:) are the positions of the joints in image and local coordinates, respectively.
We assume the following joint distributions:

~wL o~

.

m N(z;— a:j,O,og) and N (y; — yj,O,og) which measures the horizontal and vertical distances, respectively, between the observed joint positions.
B N(s;— sj,0,0%) measures the difference in foreshortening between the two parts.
B M(0; — 0,60, k)ocexp(kcos(; — 0; — 6;;)) measures the difference between the relative angle of the two parts and the ideal relative angle.

These parameters can be also obtained by maximum likelihood estimation.
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Inference

MAP inference provides a single (best) prediction of the overall pose. The factor—to—varaible messages can be written as

rpo () = max | exp(=mi(l}) = di;(L1)) + Y, qu—r(ly)
pere, keN P\
Y could be quite large (~ 1.5M possible states), hence }; x V; is too big. However a special form of pairwise energies is used, so that a message can be
calculated in O(|Y;]) time.
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Loopy belief propagation 32 /38

Message passing in cyclic graphs

When the graph has cycles, then there is no well-defined leaf—to—root order. However, one can apply message passing on cyclic graphs, which results in
loopy belief propagation.

Yyhé_»kyy‘_ﬁ—»kyk Yy ...... .é< ....... @ ...... ,54 ______ G
C.T D'T EIT ) e o Y
| l 1 ; ‘ ;
C@‘_a_’@ahgac@ CYD ...... ,a. ....... (YD ...... ,C.l. ...... \@
HlT I lT J .T e ; .6 s
| | | ‘ . A
e () e, b ke

1. Initialize all messages as constant 1
2. Pass factor—to—variables and variables—to—factor messages alternately until convergence
3. Upon convergence, treat beliefs up as approximate marginals
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Messages

The factor-to—variable messages 7r_,y; remain well-defined and are computed as before.

resyw) = Y, |ep(=Erlyr) ]  av-r(y)
y}/eyF, JEN(F)\{i}
Y=Y

The variable—to—factor messages are normalized at every iteration as follows:

I renip ey re—vi (4:)

av,—r(Yi) = .
ey, renonry -y, (45)

In case of tree structured graphs, in the sum—product algorithm these normalization constants are equal to 1, since the marginal distributions, calculated in

each iteration, are exact.

IN2245 - Combinatorial Optimization in Computer Vision
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Beliefs

The approximate marginals, i.e. beliefs, are computed as before but now a factor-specific normalization constant zg is also used.

The factor marginals are given by

1
pr(yr) = —exp(=Er(yr)) || avier(y)
RF
iEN(F)

where the factor specific constant is given by

Zp = Z exp(—Er(yr)) H qv,—r(Yi)
YyreYVr ieN(F)
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Beliefs (cont.)

In addition to the factor marginals the algorithm also computes the variable marginals in a similar fashion.

H Tr>Y; Z/z )

F/EM(z
where the normalizing constant is given by
-2 1l rrn(y)
yveyv F/EA{

Since the local normalization constant zp differs at each factor for loopy belief propagation, the exact value of the normalizing constant Z cannot be
directly calculated. Instead, an approximation to the log partition function can be computed.
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Remarks on loopy belief propagation

x@‘—é—'@‘—ﬁ—’@
T ! T
cm DH EW
S S
(e
T ! T
Hl iy | J
l l

Loopy belief propagation is very popular, but has some problems:

B It might not converge (e.g., it can oscillate).
B Even if it does, the computed probabilities are only approximate.
B If there is a single cycle only in the graph, then it converges.

...... Ao o B .
. > - m > -
v v v
o | Dm En
: :
\: ...... o F e /\: ...... s Coa :
)—a—()—=—()
v v v
om I J N
: g
\: ...... o K e /\: ...... oL oa
Y, = Q/y L Y,
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