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Assume an undirected (pairwise) graphical model G “ pV, Eq with the following
energy function:

Epyq “ const `
ÿ

iPV
Eipyiq `

ÿ

pi,jqPE
Eijpyi, yjq . (1)

For each i P V, let Yi be a random variable taking values from a (finite) set Yi,
therefore Y “ Y1 ˆ ¨ ¨ ¨ ˆ Yn.

Let us introduce the following notations

■ Eipaq ∆“ θi;a, which is a vector of size |Yi|.
■ Eijpa, bq ∆“ θij;ab, which is a vector of size |Yi ˆ Yj |. Note that θij;ab ” θji;ab.

One can consider
θ “ tθα | α P Iu P Rd

as a vector, where I “ tconstu Y tpi; aqu Y tpij; abqu.

Canonical overcomplete representation
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The energy function (1) can be written (with equivalent notations) as

Epy; θq “ θconst `
ÿ

iPV
θi;yi `

ÿ

pi,jqPE
θij;yiyj .

We introduce a mapping φ : Y Ñ Rd so that

Epy; θq “ xθ, φpyqy “
ÿ

αPI
θαφαpyq .

The mapping φ is called the canonical overcomplete representation consists of
the following functions φα : Y Ñ R:

φconstpyq “1

φi;apyq “Jyi “ aK
φij;abpyq “Jyi “ a, yj “ bK .

Revisit the Max-sum algorithm
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Reminder: the Max-sum algorithm solves the following optimization problem:

y˚ P argmax
yPY

ppyq “ argmax
yPY

1

Z
exp

˜ ÿ

FPF
´EF pyF q

¸
“ argmin

yPY

ÿ

FPF
EF pyF q .

It maintains messages Mij “ tMij;a | a P Yju for each pi, jq P E , where

Mij;b :“ min
aPYi

 pθi;a `
ÿ

ps,iqPE,s‰j

Msi;aq ` θij;ab
( ` consti .

M “ tMiju denotes the vector of all messages.

Revisit the Max-sum algorithm
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Assuming the following factor graph, let us calculate the message rFijÑYj .

Yk

Fik

Yi

Fi

Fil

Yl

Fij

Yj

rFijÑYj pyjq “ min
yiPYi

 
Eijpyi, yjq ` qYiÑFij pyiq

(

“ min
yiPYi

!
Eijpyi, yjq `

ÿ

FPMpiqztFij ,Fiu
rFÑYipyiq ` rFiÑYipyiq

)

“ min
yiPYi

!
pEipyiq `

ÿ

FPMpiqztFij ,Fiu
rFÑYipyiqq ` Eijpyi, yjq

)

“ min
yiPYi

!
pθi;yi `

ÿ

sPNpF qzti,ju,FPMpiq
Msi;yiq ` θij;yiyj

)
“ Mij;yj .

Reparameterization
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Assuming two parameterization θ and θ̄, if they define the same energy function,
i.e. Epy; θq “ Epy; θ̄q for all y P Y , denoted by θ ” θ̄, then θ is called a
reparameterization of θ̄.
Note that this condition does not necessarily imply that θ “ θ̄. Indeed, any
message vector M “ tMstu defines reparameterization θ “ θ̄rM s as follows:

θi “θ̄i `
ÿ

pi,jqPE
Mij

θij;ab “θ̄ij;ab ´ Mij;b ´ Mji;a

θconst “θ̄const

In belief propagation (BP) we can alternatively store the reparameterization
θ “ θ̄rM s instead of θ̄ and M . Namely, sending a message from node i to j is
equivalent to reparameterizing vectors θi and θij .



Normal form
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A message for an edge pi, jq P E is called valid if any update does not change Mij .
A message for pi, jq P E is valid iff

min
aPYi

tθi;a ` θij;abu “ constij @b P Yj .

That is a message from s to t does not change θij and θi. We say that θ is in a
normal form if all messages are valid.
Minimum value of the energy is given by Φpθq “ minyPY Epy; θq and the
min-marginals for nodes and edges are given by

Φi;apθq “ min
yPY,yi“a

Epy; θq and Φij;abpθq “ min
yPY,yi“a,yj“b

Epy; θq .

For a tree-structured graph the values θi;a and θij;ab for vector θ in a normal
correspond to min-marginals (up to a constant):

Φi;apθq “θi;a ` consti

Φij;abpθq “tθi;a ` θij;ab ` θj;bu ` constij
(2)

LP relaxation
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In general, energy minimization (1) is NP-hard. Therefore, one can focused on
approximation, such as linear programming relaxation. The constraint set is as
follows:

LpGq “
!
τ P Rd` | τconst “ 1,

ÿ

aPYi

τi;a “ 1,
ÿ

aPYi

τij;ab “ τj;b
(

The following minimization problem yields a lower bound on Φpθ̄q:
min

τPLpGq
xθ̄, τy . (3)

Convex combinations of trees
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We need to introduce some notation. Let T be a collection of trees in graph G and
ρT ą 0, T P T be some distribution on T . We assume that each edge is covered
by at least one tree.
For a given tree T “ pVT , ET q we define a set of indices associated with vertices
and edges in the tree:

IT “ tconstu Y tpi; aq | i P VT u Y tpij; abq | pi, jq P ET u .

To each tree T P T , we associate an energy parameter θT belonging to the
following linear constraint set:

AT “ tθT P Rd | θTα “ 0 @α P IzIT u .

By concatenating all of the tree vectors, we get a vector
θ “ tθT | T P T u P Rdˆ|T | belonging to the constraint set

A “ tθ P Rdˆ|T | | θT P AT for all T P T u .

Convex combinations of trees
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Consider function Φρ : A Ñ R defined as follows:

Φρpθq “
ÿ

T

ρTΦpθT q “
ÿ

T

ρT min
yPY xθT , φpyqy .

Let θ̄ “ ř
T ρT θT , then

Φρpθq “
ÿ

T

ρTΦpθT q “ ErΦpθT qs ď ΦpErθT sq “ min
yPY xErθT s, φpyqy

“min
yPY x

ÿ

T

ρT θT , φpyqy “ min
yPY xθ̄, φpyqy “ Φpθ̄q .

To get the tightest bound we can consider the following maximization problem:

max
θPA,

ř
T ρT θT “θ̄

Φρpθq . (4)

New Tree-reweighing message passing
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Theorem 1. Minimization problem (3) is the dual to maximization problem (4).
Strong duality holds, so their optimal values coincide.

min
τPLpGq

xθ̄, τy Ø max
θPA,

ř
T ρT θT “θ̄

Φρpθq

The maximization problem (4) is modified by replacing the constraint as

max
θPA,

ř
T ρT θT ”θ̄

Φρpθq . (5)

Theorem 2. The optimal value of problem (5) equals to the optimal value of
problem (4).

The goal of the reparameterization step is to make sure that the algorithm satisfies
the min-marginal property.

Weak tree agreement
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Let OPTT pθT q be the set of optimal configurations for parameter θT and
OPTpθq “ tOPTT pθT q | T P T u P p2Yq|T |. For two collections S, S̃ P p2Yq|T |, we
write S Ď S̃ if ST Ď S̃T for every tree T .

S is consistent if it satisfies the following three conditions:

1. For every tree T set ST is non-empty.
2. If node i is contained in trees T and T 1, then for all y P ST there exists

configuration y1 P ST 1
which agrees with y on node i, i.e. yi “ y1

i.
3. If edge pi, jq is contained in trees T and T 1, then for all y P ST there exists

configuration y1 P ST 1
which agrees with y on nodes i and j, i.e.

yi “ y1
i,yj “ y1

j .

Vector θ “ tθT u P A is said to satisfy the weak tree agreement condition if
there exists collection S Ď OPTpθq which is consistent.

If a vector θ satisfies the WTA condition, then the TRW-S algorithm will not make
any progress, i.e. it will not increase function Φρ.

TRW-S algorithm
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0. Initialize θ so that θ P A and
ř

T ρT θT ” θ̄.
1. Select some order for nodes and edges in V Y E . For each element ω P V Y E

find all trees Tω Ď T containing ω. If there is more than one tree, then do the
following:

(a) For all trees T P Tω reparameterize θT such that values θTi;a (if ω “ i is a

node) or θTi;a ` θTij;abθ
T
j;b (if ω “ pi, jq is an edge) give correct

min-marginals for tree T .
(b) “Averaging operation”:

If ω “ i is a node then set θTi :“ 1
ρi

ř
TPTi ρ

T θTi for trees T P Ti
If ω “ pi, jq is an edge then set θTi , θ

T
ij , θ

T
j for trees T P Tij so that

pθTi;a ` θTij;ab ` θTj;bq “ 1

ρij

ÿ

TPTij
pθTi;a ` θTij;ab ` θTj;bq

2. Check whether a stopping criterion is satisfied; if yes, terminate, otherwise go
to step 1.

Mean Field methods
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Assume two discrete probability distributions P and Q. One way to measure the
difference between P and Q is to calculate the Kullback–Leibler (KL)
divergence (a.k.a. relative entropy) defined as

DKLpP }Qq “
ÿ

i

P piq log P piq
Qpiq “

ÿ

i

P piq logP piq ´
ÿ

i

P piq logQpiq

“EP rlogP piqs ´ EP rlogQpiqs .
It is defined iff Qpiq “ 0 implies P piq “ 0, for all i. If P piq “ 0, then the ith term
is interpreted as 0. The KL divergence is always non-negative, moreover
DKLpP }Qq “ 0 iff P “ Q almost everywhere.

Interpretation (Information Theory): it is the amount of information lost when Q is
used to approximate P . It measures the expected number of extra bits required to
code samples from P using a code optimized for Q rather than the code optimized
for P .

Motivation
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For general (discrete) factor graph models, performing probabilistic inference is
hard. Assume we are given an intractable distribution ppy | xq. We consider an
approximate distribution qpyq, which is tractable, for ppy | xq.
One way of finding the best approximating distribution is to pose it as an
optimization problem over probability distributions: given a distribution ppy | xq
and a family Q of tractable distributions q P Q on Y , we want to solve

q˚ P argmin
qPQ

DKLpqpyq}ppy | xqq “ argmin
qPQ

ÿ

yPY
qpyq log qpyq

ppy | xq
“ argmin

qPQ

! ÿ

yPY
qpyq log qpyq

loooooooomoooooooon
´Hpqq

´
ÿ

yPY
qpyq log ppy | xq

)
.

The term ´ř
yPY qpyq log qpyq ∆“ Hpqq is called the entropy of the distribution q.

Mean Field methods
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DKLpqpyq}ppy | xqq “ ´ Hpqq ´
ÿ

yPY
qpyq log ppy | xq

“ ´Hpqq ´
ÿ

yPY
qpyq log 1

Zpxq
ź

FPF
expp´EF pyF ;xF qq

“ ´Hpqq `
ÿ

yPY
qpyq

ÿ

FPF
EF pyF ;xF q ` logZpxq

“ ´Hpqq `
ÿ

FPF

ÿ

yF PYF

ÿ

y1PY,
y1
F “yF

qpyq

loooomoooon
µF,yF

pqq

EF pyF ;xF q ` logZpxq

“ ´Hpqq `
ÿ

FPF

ÿ

yF PYF

µF,yF pqqEF pyF ;xF q ` logZpxq ,

where µF,yF pqq “ ř
y1PY,y1

F “yF
qpyq are the marginals of q.

Gibbs inequality ˚
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If the set Q is rich enough to contain a close approximation to ppy | xq and we
succeed at finding it, then the marginals of q˚ will provide a good approximation to
the true marginals of ppy | xq that are intractable to compute.

Gibbs inequality provides a lower bound on the log partition function.

0 ďDKLpqpyq}ppy | xqq“´Hpqq`
ÿ

FPF

ÿ

yF PYF

µF,yF pqqEF pyF ;xF q`logZpxq

logZpxq ěHpqq ´
ÿ

FPF

ÿ

yF PYF

µF,yF pqqEF pyF ;xF q .

Naive mean field
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Take a set Q as the set of all distributions in the form:

qpyq “
ź

iPV
qipyiq .

For example, in case of the following factor graph:

q1 q2 q3

q4 q5 q6

q7 q8 q9

Original factor graph Mean field approximation

Naive mean field
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Set Q consists of all distributions in the form:

qpyq “
ź

iPV
qipyiq .

Marginals µF,yF take the form

µF,yF pqq “
ÿ

y1PY,
y1
F “yF

qpyq “ qNpF qpyF q “
ź

iPNpF q
qipyiq .

Entropy Hpqq decomposes as

Hpqq “
ÿ

iPV
Hipqiq “ ´

ÿ

iPV

ÿ

yiPYi

qipyiq log qipyiq .

Proof. Exercise.

Naive Mean Field
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Putting it together,

q˚ P argmin
qPQ

DKLpqpyq}ppy | xqq

“ argmin
qPQ

#
´Hpqq `

ÿ

FPF

ÿ

yF PYF

µF,yF pqqEF pyF ;xF q ` logZpxq
+

“ argmax
qPQ

#
Hpqq ´

ÿ

FPF

ÿ

yF PYF

µF,yF pqqEF pyF ;xF q
+

“ argmax
qPQ

$
&
%́

ÿ

iPV

ÿ

yiPYi

qipyiq log qipyiq ´
ÿ

FPF

ÿ

yF PYF

´ ź

iPNpF q
qipyiq

¯
EF pyF ;xF q

,
.
- .

Optimizing over Q means to optimize over all qi such that qipyiq ě 0 andř
yiPYi

qipyiq “ 1 for all i P V.

Optimization
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argmax
qPQ

$
&
%́

ÿ

iPV

ÿ

yiPYi

qipyiq log qipyiq ´
ÿ

FPF

ÿ

yF PYF

´ ź

iPNpF q
qipyiq

¯
EF pyF ;xF q

,
.
- .

The entropy term is concave and the second term is non-concave due to products
of variables occurring in the expression. Therefore solving this non-concave
maximization problem globally is hard in general.

Remedy: block coordinate ascent

We hold all variables fixed except for a single
block qm, then we obtain a tractable concave
maximization problem
Ñ closed-form update for each qm.

qm

qjF

µF

ql qn

qo



Lagrange multipliers
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To obtain closed form solution, we define the Lagrangian function:

Lpqi, λq “
#

´
ÿ

iPV

ÿ

yiPYi

qipyiq log qipyiq

´
ÿ

FPF

ÿ

yF PYF

´ ź

iPNpF q
qipyiq

¯
EF pyF ;xF q ` λ

´ ÿ

yiPYi

qipyiq ´ 1
¯+

.

Setting the derivatives of L w.r.t. qi to 0, we obtain

BL
Bqipyiq “ 0 “ ´ plog qipyiq ` 1q ´

ÿ

FPMpiq

ÿ

y1
F PYF ,
y1
i“yi

´ ź

jPNpF qztiu
q̂jpyjq

¯
EF pyF ;xF q ` λ

qi̊ pyiq “ exp

˜
´ 1 ´

ÿ

FPMpiq

ÿ

y1
F PYF ,
y1
i“yi

´ ź

jPNpF qztiu
q̂jpyjq

¯
EF pyF ;xF q ` λ

¸
.

Lagrange multipliers

Tree-reweighted message passing Mean Field methods

IN2245 - Combinatorial Optimization in Computer Vision 10. Tree-reweighted Message Passing & Mean Field Methods – 26 / 31

λ can be calculated as follows.

ÿ

yiPYi

qipyiq “
ÿ

yiPYi

exp

˜
´ 1 ´

ÿ

FPMpiq

ÿ

y1
F PYF ,
y1
i“yi

´ ź

jPNpF qztiu
q̂jpyjq

¯
EF pyF ;xF q ` λ

¸

expp1 ´ λq “
ÿ

yiPYi

exp

˜
´

ÿ

FPMpiq

ÿ

y1
F PYF ,y1

i“yi

´ ź

jPNpF qztiu
q̂jpyjq

¯
EF pyF ;xF q

¸

looooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooon
ZipxF q

λ ´ 1 “ ´ logZipxF q ,
where ZipxF q is a normalizing constant for qi.

Update equation
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By substituting, we obtain the obtain equation for the Naive Mean Field method

qi̊ pyiq “ exp

˜
´

ÿ

FPMpiq

ÿ

y1
F PYF ,
y1
i“yi

´ ź

jPNpF qztiu
q̂jpyjq

¯
EF pyF ;xF q ´ logZipxF q

¸

“ 1

ZipxF q exp
˜

´
ÿ

FPMpiq

ÿ

y1
F PYF ,
y1
i“yi

´ ź

jPNpF qztiu
q̂jpyjq

¯
EF pyF ;xF q

¸
.

Semantic segmentation
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Krähenbühl and Koltun proposed an efficient approximate inference in fully
connected CRF model by applying Naive Mean Field approach.

Semantic segmentation: assign a label
from the set of labels L “ tl1, l2, . . . , lku
for each pixel on the image regarding
their semantic meaning.

For each pixel on the image a random variable is assigned
taking a value from L. A fully connected pairwise CRF
model G “ pV, Eq is considered, where the corresponding
energy function is given by

Epyq “
ÿ

iPV
Eipyiq `

ÿ

pi,jqPE
Eijpyi, yjq ,

where E “ tpi, jq P V ˆ V | i ă ju.

Energy functions
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■ Unary energies Eipyiq are computed independently for each pixel as
Eipyiq “ ´ logPipyiq measures the degree of disagreement between labelling
yi and the image at pixel i.

■ Pairwise energies (so-called contrast sensitive Potts-model), measuring the
extent to which the labelling y is not piecewise smooth, have the form (pi and
Ii denote the pixel coordinates and intensity, resp.)

Eijpyi, yjq “Jyi ‰ yjK
ÿ

m

wpmqkpmqpfi, fjq

“Jyi ‰ yjK
ÿ

m

wpmq exp
ˆ

´1

2
pfi ´ fjqTΛpmqpfi ´ fjq

˙

“Jyi ‰ yjK
!
wp1q exp

´
´ |pi ´ pj |2

2θ2α
´ |Ii ´ Ij |2

2θ2β

¯

` wp2q exp
´

´ |pi ´ pj |2
2θ2γ

¯)
.

The parameters θα, θβ and θγ are estimated on a set of training images.

Inference
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The inference is based on Naive Mean Field approximation, where the update
equation is given by

qipyiq “ 1

Zi
exp

#
´Eipyiq ´

ÿ

l1PL
Jyi ‰ yjK

Kÿ

m“1

wpmq ÿ

i‰j

kpmqpfi, fjqqjpl1q
+

.

The inference is performed in average 0.2 seconds for 500.000 variables (in
contrast to 36 hours).
The main idea: the message passing step can be expressed as a convolution with a
Gaussian kernel GΛpmq in feature space:

ÿ

jPV
kpmqpfi, fjqqjplq ´ qiplq “ rGΛpmq ˚ qplqspfiq ´ qiplq .

Note that the convolution sums over all variables, while message passing does not
sum over qi. This convolution can be efficiently calculated in Op|V|q time (instead
of Op|V|2q).
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