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Tree-reweighted message passing

Canonical overcomplete representation
Tree-reweighted message passing Mean Field methods

The energy function (1) can be written (with equivalent notations) as

E(Y§0) = Beonst + Z iy T Z

i€y (i,9)e€
We introduce a mapping ¢ : ) — R? so that

E y,9) = /61 é(y) = 2 €(L¢O.(y) .
ael

The mapping ¢ is called the canonical overcomplete representation consists of
the following functions ¢, : Y — R:

¢const(y) =1
bialy) = al
ab(y) =lyi = a,y; = 0] .
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Revisit the/Max-sum algorithm
Tree-reweighted message passing Mean Field methods

Assuming the following factor graph, let us calculate the message 7r,; ;.

TRy (Y) = mnin {Eij(yi, vs) + avior; (Wi}
rEoy; (Yi) + TRy, (yi)}
FeM(\(Fyj.Fi}

= mi}l} {(Ei(yf) + Z reoy; (1i) + Ei(yis ’yj)}
v FeM()\(Fij.Fi}

:;121}11 {Eij i Yj) +

= min {(61-;1,1. +
Yi€Vi N

A[Si:yi) + 9ij:yzyj} = ]\'[ij:yj .
SEN(F)\{i,j},FeM(i)
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Tree-reweighted message passing Mean Field methods

10. Tree-reweighted Message
Passing &
Mean Field Methods

Introduction
Tree-reweighted message passing Mean Field methods

Assume an undirected (pairwise) graphical model G = (V, £) with the following
energy function:

E(y) =const+2Ei(yT-)+ 2 Eii(yiv i) - (1)
€V (i.)eE

For each i € V, let Y; be a random variable taking values from a (finite) set ),
therefore Y = Vy x -+ x Y.

Let us introduce the following notations

B Ei(a) 29, , which is a vector of size |V|.
B FE;j(a,b) = 04, which is a vector of size |V; x Y;|. Note that 6;;..5 = 8ji;ap-

One can consider
0=1{0,| aecT}eR?

as a vector, where Z = {const} U {(;a)} U {(ij;ab)}.

Revisit the/Max-sum algorithm

Tree-reweighted message passing Mean Field methods
Reminder: the Max-sum algorithm solves the following optimization problem:
* 1 H
y* € argmax p(y) = argmax — exp Z —Ep(yr) | = argmin Z Er(yr) -
yey vey 2 FeF V&Y per
It maintains messages M;; = {Mjj.o | a € V;} for each (4,7) € £, where
Mijp = ll}ilp {(Bi0 + Z Miza) + Oj.ap ) + const; .
e (s,0)€E 5]

M = {M;;} denotes the vector of all messages.

Reparameterization
Tree-reweighted message passing Mean Field methods

Assuming two parameterization 6 and @, if they define the same energy function,
i.e. E(y;0) = E(y;0) for all y € ), denoted by 6 = 6, then 0 is called a
reparameterization of 6.

Note that this condition does not necessarily imply that @ = 6. Indeed, any
message vector M = {Mg} defines reparameterization § = 0[M] as follows:

i+ Y, My
(i.5)e€
ijiab — Mijip — Mjiza
econst =‘9const
In belief propagation (BP) we can alternatively store the reparameterization

6 = [M] instead of § and M. Namely, sending a message from node i to j is
equivalent to reparameterizing vectors 6; and 6;;.
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Normal form

Tree-reweighted message passing Mean Field methods

LP relaxation

Tree-reweighted message passing Mean Field methods

A message for an edge (i, j) € € is called valid if any update does not change M;;.
A message for (i,7) € € is valid iff

min{&i;a + 0,-]-;&1,} = const;; Vbe y]' .
acYi

That is a message from s to ¢ does not change 6;; and 6;. We say that f is in a
normal form if all messages are valid.

Minimum value of the energy is given by ®(#) = minycy E(y;6) and the
min-marginals for nodes and edges are given by

D;q(f) = min E(y;0) and ®;5,q(0) = min E(y;0) .
' yeYi=a ’ yeV,yi=ay;=b

For a tree-structured graph the values 6., and 0;;., for vector 6 in a normal
correspond to min-marginals (up to a constant):

(I>i;u(9) =9i;a -+ const;
Dijap(0) ={0i0 + Oijiap + 055} + consty;

2
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Convex _combinations of trees

Tree-reweighted message passing Mean Field methods

We need to introduce some notation. Let 7 be a collection of trees in graph G and
p'' >0, T € T be some distribution on 7. We assume that each edge is covered
by at least one tree.

For a given tree T = (W', E7) we define a set of indices associated with vertices
and edges in the tree:

T — {const} U {(i;a) | i€ VI} U {(if;ab) | (i,5) € ET} .

To each tree T € T, we associate an energy parameter 7 belonging to the
following linear constraint set:

T= {97 eRr? | 6L =0 Va e \TT} .

By concatenating all of the tree vectors, we get a vector
0 = {7 | T e T} e R¥ITI belonging to the constraint set

A={0eR™T 9T e AT forall Te T} .

IN2245 - Combinatorial Optimization in Computer Vision

New Tree-reweighing message passing
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In general, energy minimization (1) is NP-hard. Therefore, one can focused on
approximation, such as linear programming relaxation. The constraint set is as
follows:

[:(g) = {T € Ri | Teonst = 1, Z Tia = 1, Z Tijab = Tj;b}
agy; acY;
O o=

G

N x Ve R

y=2 (y1:92) = (2,3)

The following minimization problem yields a lower bound on ®(6):
min (0,7 . (3)

Computer

Convex combinations of trees

Tree-reweighted message passing Mean Field methods

Consider function ®, : A — R defined as follows:
0) = ; pTo(0") = ; P! min6”, o)) -
Let 6 = > pT 0T, then
D,(6) :ZPT‘?(@T) = E[®(67)] < 2(E[67]) = rynei§1<1E[9T]7 o(y)
= mln<2 phoT,o(y)) = mln<9 é(y)) = @(0) .
To get the tightest bound we can consider the following maximization problem:

Dy(0) - Q)

max -
6e A,y pTOT=0
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Weak tree agreement

Tree-reweighted message passing Mean Field methods

Theorem 1. Minimization problem (3) is the dual to maximization problem (4).
Strong duality holds, so their optimal values coincide.

min {0, 1) B

max  ®,(0)
TEL(G) 0cA,Y  pT0T=0

The maximization problem (4) is modified by replacing the constraint as

2,(6) - (5)

feA ZT pToT—o

Theorem 2. The optimal value of problem (5) equals to the optimal value of
problem (4).

The goal of the reparameterization step is to make sure that the algorithm satisfies
the min-marginal property.
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Let OPT”(AT) be the set of optimal configurations for parameter §7 and
OPT(8) = {OPTT(67) | T e T} € (2¥)/71. For two collections S,S e (2”71, we
write S < S if ST = ST for every tree T.

S is consistent if it satisfies the following three conditions:

1. For every tree T set ST is non-empty.

2. If node i is contained in trees T and T”, then for all y € ST there exists
configuration y’ € ST which agrees with y on node 4, i.e. y; = yh.

3. If edge (i, ) is contained in trees 7' and 1", then for all y € ST there exists
configuration y’ € ST’ which agrees with y on nodes i and j, i.e.

Yi = YiY5 = Y-

Vector 6 = {#7} € A is said to satisfy the weak tree agreement condition if
there exists collection S € OPT(0) which is consistent.

If a vector @ satisfies the WTA condition, then the TRW-S algorithm will not make
any progress, i.e. it will not increase function ®,,.
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TRW:S algorithm

Tree-reweighted message passing Mean Field methods

0. Initialize 8 so that 6 € A and Y. pT67 = 4.

1. Select some order for nodes and edges in V U &. For each element we V U &
find all trees 7, = T containing w. If there is more than one tree, then do the
following:

(a) For all trees T € T,, reparameterize §7 such that values 01-7;1 ifw=1iisa
node) or 0T + 0” ab@ (if w = (¢, 7) is an edge) give correct
min- margmals for tree T.

(b)  “Averaging operation”:
If w =i is a node then set 6] := i - D reT; pT0T for trees T e T;

If w = (i,7) is an edge then set 61T, 07, 0T for trees T € Ti; so that
T T 1
(ei;a +0 z] ab T 9 ) -

T T
(01a+0z_7 ab+6 b)
Pij TET;;

2. Check whether a stopping criterion is satisfied; if yes, terminate, otherwise go
to step 1.
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KL divergence

Tree-reweighted message passing Mean Field methods

Assume two discrete probability distributions P and @. One way to measure the
difference between P and @ is to calculate the Kullback—Leibler (KL)
divergence (a.k.a. relative entropy) defined as

Dxu(P|Q) = ZPz)log ZP 1ogP<z)—ZP (i) log Q(i)

=EP[10g P(i)] - ]Ep[log Q)] .

It is defined iff Q(i) = 0 implies P(¢) = 0, for all i. If P(i) = 0, then the ith term
is interpreted as 0. The KL divergence is always non-negative, moreover
Dk1(P|Q) =0 iff P = Q almost everywhere.

Interpretation (Information Theory): it is the amount of information lost when @ is
used to approximate P. It measures the expected number of extra bits required to
code samples from P using a code optimized for ) rather than the code optimized
for P.
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Mean/Field methods

Tree-reweighted message passing Mean Field methods
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_Motivation

Tree-reweighted message passing Mean Field methods

For general (discrete) factor graph models, performing probabilistic inference is
hard. Assume we are given an intractable distribution p(y | ). We consider an
approximate distribution ¢(y), which is tractable, for p(y | ).

One way of finding the best approximating distribution is to pose it as an
optimization problem over probability distributions: given a distribution p(y | )
and a family @ of tractable distributions g € ) on )}, we want to solve

¢* eargmin Dic(a(v)p(y | 2)) = argmin Y q(y) log —2)
7€Q EQ ey p(y | @)
= argmin{ > aly)loga(y) = > a(y) logply | w)} :
s yey yey
| S —
—H(q)

The term — Zye)} q(y) logq(y) 2 H(q) is called the entropy of the distribution g.
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Gibbs: inequality *

Tree-reweighted message passing Mean Field methods

Dre(a@)lp(y | 2) = — H(g) — 3 aly)logply | 2)

yey
= —H(q) = ), a)log — ]_[ exp(—Er(yr; or))
yey
= —H(q)+ Y, a(y) Z Ep(yr;ar) + log Z(x)
yeY FeF

Z Z Z q(y) Ep(yr; xr) + log Z(x)

FeF yreYr y '€y,

Yp=yr
wEyp (@)
- + 20 D) wrye(@Er(yr;ar) +log Z()
FeF yreYr

where f1py,.(q) = Yyey Yn=yr q(y) are the marginals of ¢.
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Naive mean field

Tree-reweighted message passing Mean Field methods
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If the set @ is rich enough to contain a close approximation to p(y | ) and we
succeed at finding it, then the marginals of ¢* will provide a good approximation to
the true marginals of p(y | x) that are intractable to compute.

Gibbs inequality provides a lower bound on the log partition function.

==H(q) +Z Z ryp (@) Er(yr; xr)+log Z(z)
FeF yreYr

log Z(z) 2H(q) — Y, D, tryr(@)Er(yrizr) .
FeF yreYr

0 <Dkwr(a()lp(y | =
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Naive:mean field

Tree-reweighted message passing Mean Field methods

Take a set @ as the set of all distributions in the form:

=[Tatw)

i€V

For example, in case of the following factor graph:

091
2
L

Original factor graph Mean field approximation

Set @ consists of all distributions in the form:
=[Taw)
i€V
Marginals pif,y, take the form
prye(@) = Y W) = avrywe) = [ @)

y'eY, iEN(F)
Yp=Yr

Entropy H(q) decomposes as

= D Hila) = =) ) ai(yi) log aily:)

i€V €V yi€Ys

Proof. Exercise. O
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Naive Mean Field

Tree-reweighted message passing Mean Field methods

Putting it together,

q* eargmin Dk, (q(y)[p(y | =)
qeQ

—argfgln {* @+ D >, nrue(@Fr(yriar) +log Z(x )}

FeF yreYr

:argrgaX{H @-> X #F,yF(q)EF(yF;:vF)}
qe

FeF yreYr

=argmax {— > M ai(yi)logaily) = Y, D) ( [T @t >EF yriTr)

a=Q i€V yie; FeF ypeVp  ieN(F)

Optimizing over Q means to optimize over all ¢; such that ¢;(y;) = 0 and
Dyiey; 6i(yi) =1 forallie V.
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Optimization

Tree-reweighted message passing Mean Field methods

argmax Z ZQz Yi 10gq1 yz Z Z ( H qt Yi >EF vaxF)

(S i€V yieV; FeFypeYr ieN(F)

The entropy term is concave and the second term is non-concave due to products
of variables occurring in the expression. Therefore solving this non-concave
maximization problem globally is hard in general.

Remedy: block coordinate ascent i
L 95

We hold all variables fixed except for a single

block ¢, then we obtain a tractable concave ~  ~ .. | B . _____
maximization problem T ﬂF.."T T

— closed-form update for each ¢,.
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Lagrange multipliers

Tree-reweighted message passing Mean Field methods

Lagrange multipliers

Tnin

Tree-reweighted message passing Mean Field methods

To obtain closed form solution, we define the Lagrangian function:

Lgi, \) = { =0 alyi)logai(yi)

€V yieY;
- Z Z ( H Qi(yi)>EF(yF;$F)+>\( Z ai(yi) — 1)}
FeFypeYp ieN(F) Yi€Yi

Setting the derivatives of L w.r.t. g; to 0, we obtain

oL
24i(yi)

0=—(ogaiw)+ =Y, N ([T @w)Brlurior) +A
FeM (i) yeVr, jeN(F)\{i}
Yi=yi

q; (yi) =exp (* -3 11 éj(yj))EF(yF;wF) + >\> .
FeM(i) ypeYr, jeN(F)\{i}
Yi=yi
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Update equation

Tree-reweighted message passing Mean Field methods

A can be calculated as follows.

@) = D, eXP(*lf > ( I1 lij(yj)>EF(yF§zF)+)\>

yi€Yi yi€Yi FeM (i) ypeVr, jEN(F)\{i}

Yi=vi
exp(l —\) = Z exp ( - Z H éj(yj))EF(yF§IF)>

yi€di FeM(i) ypedryi=yi jeN(F)\{i}

Zi(zr)
A—1=—logZ(zp),

where Z;(z) is a normalizing constant for g;.
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Semantic segmentation

Tree-reweighted message passing Mean Field methods

By substituting, we obtain the obtain equation for the Naive Mean Field method

q; (yi) =exp ( -2 ( 11 ‘ij(yj))EF(yFﬂ?F) —log Zi(zF))
FeM (i) y,FIEva JEN(P)\{i}
Yi=Yi

1 ~

=mexp<— > X (11 qj(yj))Ep(yp;mp)>.

e FEN() ypevp, jeN(FI\(i}
Yi=Yi
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Energy functions

Tree-reweighted message passing Mean Field methods

Krahenbiihl and Koltun proposed an efficient approximate inference in fully
connected CRF model by applying Naive Mean Field approach.

Semantic segmentation: assign a label
from the set of labels £ = {l1,l2,...,lk}
for each pixel on the image regarding
their semantic meaning.

For each pixel on the image a random variable is assigned
taking a value from L. A fully connected pairwise CRF
model G = (V, ) is considered, where the corresponding
energy function is given by

E(y) =Y Ei(y)+ Y, Eij(yi,y;) .

i€V (i,5)€€
where £ = {(i,j) e V x V| i < j}.
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Inference

Tree-reweighted message passing Mean Field methods

B Unary energies E;(y;) are computed independently for each pixel as
E;(y;) = —log P;(y;) measures the degree of disagreement between labelling
y; and the image at pixel i.

m Pairwise energies (so-called contrast sensitive Potts-model), measuring the
extent to which the labelling y is not piecewise smooth, have the form (p; and
I; denote the pixel coordinates and intensity, resp.)

By, ) =lyi # 3] D, w ™k (£, 85)
m
1
=lyi #yi] ) 0™ exp <—§(fi — 1) " A(E; — f]’))
m

1 lpi —pil* i = L
=[y: # yj]]{w( ) exp ( - T?x] - T/%J>

2
pi — )l
+w® <, \71)} 4
w'?) exp 202
The parameters 6,03 and 0., are estimated on a set of training images.
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Literature *
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The inference is based on Naive Mean Field approximation, where the update
equation is given by

K
ailyi) = Z%eXp {7Ei(yi) =Yy Ayl D) w™ Zk‘m(fi,fj)qj(l’)} .
Vel m=1 i#]
The inference is performed in average 0.2 seconds for 500.000 variables (in
contrast to 36 hours).
The main idea: the message passing step can be expressed as a convolution with a
Gaussian kernel G 5 () in feature space:

DR £)g; (1) — ail) = [Gpen *aD](E) — a:(D) -
JeV

Note that the convolution sums over all variables, while message passing does not
sum over ¢;. This convolution can be efficiently calculated in O([V|) time (instead
of O(|V[?)).
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