Combinatorial Optimization in Computer Vision (IN2245)

Frank R. Schmidt Csaba Domokos

Winter Semester 2015/2016

10. Tree-reweighted Message Passing & Mean Field Methods	
Tree-reweighted message passing	;
Introduction	
Canonical overcomplete representation	
Revisit the Max-sum algorithm	
Canonical overcomplete representation Revisit the Max-sum algorithm Revisit the Max-sum algorithm Reparameterization	
Reparameterization	
Normal form	
Normal form	
Convex combinations of trees	
Convex combinations of trees	
New Tree-reweighing message passing	1
Weak tree agreement	
Weak tree agreement TRW-S algorithm	
Mean Field methods	10
KI divergence	1 ⁻

$Motivation \ldots \ldots$	18
Mean Field methods	19
Gibbs inequality	20
Naive mean field	21
Naive mean field	22
Naive Mean Field	23
Optimization	24
Lagrange multipliers	25
Lagrange multipliers	26
Update equation	27
Semantic segmentation	28
Energy functions	29
Inference	30
Structured Mean Field	
Literature	32

10. Tree-reweighted Message Passing & Mean Field Methods

2 / 32

Tree-reweighted message passing

3 / 32

Introduction

Assume an undirected (pairwise) graphical model $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with the following energy function:

$$E(\mathbf{y}) = \operatorname{const} + \sum_{i \in \mathcal{V}} E_i(y_i) + \sum_{(i,j) \in \mathcal{E}} E_{ij}(y_i, y_j) . \tag{1}$$

For each $i \in \mathcal{V}$, let Y_i be a random variable taking values from a (finite) set \mathcal{Y}_i , therefore $\mathcal{Y} = \mathcal{Y}_1 \times \cdots \times \mathcal{Y}_n$.

Let us introduce the following notations

- \blacksquare $E_i(a) \stackrel{\Delta}{=} \theta_{i;a}$, which is a vector of size $|\mathcal{Y}_i|$.
- $E_{ij}(a,b) \stackrel{\Delta}{=} \theta_{ij;ab}$, which is a vector of size $|\mathcal{Y}_i \times \mathcal{Y}_j|$. Note that $\theta_{ij;ab} \equiv \theta_{ji;ab}$.

One can consider

$$\theta = \{\theta_{\alpha} \mid \alpha \in \mathcal{I}\} \in \mathbb{R}^d$$

as a vector, where $\mathcal{I} = \{ \mathsf{const} \} \cup \{ (i; a) \} \cup \{ (ij; ab) \}.$

IN2245 - Combinatorial Optimization in Computer Vision

10. Tree-reweighted Message Passing & Mean Field Methods – 4 / 32

Canonical overcomplete representation

The energy function (1) can be written (with equivalent notations) as

$$E(\mathbf{y}; \theta) = \theta_{\mathsf{const}} + \sum_{i \in \mathcal{V}} \theta_{i; y_i} + \sum_{(i, j) \in \mathcal{E}} \theta_{ij; y_i y_j} \ .$$

We introduce a mapping $\phi:\mathcal{Y}\to\mathbb{R}^d$ so that

$$E(\mathbf{y}; \theta) = \langle \theta, \phi(\mathbf{y}) \rangle = \sum_{\alpha \in \mathcal{I}} \theta_{\alpha} \phi_{\alpha}(\mathbf{y}) .$$

The mapping ϕ is called the **canonical overcomplete representation** consists of the following functions $\phi_{\alpha}: \mathcal{Y} \to \mathbb{R}$:

$$\begin{aligned} \phi_{\mathsf{const}}(\mathbf{y}) &= 1 \\ \phi_{i;a}(\mathbf{y}) &= \llbracket y_i = a \rrbracket \\ \phi_{ij;ab}(\mathbf{y}) &= \llbracket y_i = a, y_j = b \rrbracket \ . \end{aligned}$$

IN2245 - Combinatorial Optimization in Computer Vision

10. Tree-reweighted Message Passing & Mean Field Methods – 5 / 32

Revisit the Max-sum algorithm

Reminder: the Max-sum algorithm solves the following optimization problem:

$$y^* \in \underset{y \in \mathcal{Y}}{\operatorname{argmax}} p(y) = \underset{y \in \mathcal{Y}}{\operatorname{argmax}} \frac{1}{Z} \exp \left(\sum_{F \in \mathcal{F}} -E_F(y_F) \right) = \underset{y \in \mathcal{Y}}{\operatorname{argmin}} \sum_{F \in \mathcal{F}} E_F(y_F) .$$

It maintains messages $M_{ij} = \{M_{ij;a} \mid a \in \mathcal{Y}_j\}$ for each $(i,j) \in \mathcal{E}$, where

$$M_{ij;b} := \min_{a \in \mathcal{Y}_i} \left\{ \left(\bar{\theta}_{i;a} + \sum_{(s,i) \in \mathcal{E}, s \neq j} M_{si;a} \right) + \bar{\theta}_{ij;ab} \right\} + \mathsf{const}_i \;.$$

 $M = \{M_{ij}\}$ denotes the vector of all messages.

IN2245 - Combinatorial Optimization in Computer Vision

10. Tree-reweighted Message Passing & Mean Field Methods – 6 / 32

Revisit the Max-sum algorithm

Assuming the following factor graph, let us calculate the message $r_{F_{ij} \to Y_j}$.

$$r_{F_{ij} \to Y_j}(y_j) = \min_{y_i \in \mathcal{Y}_i} \left\{ E_{ij}(y_i, y_j) + q_{Y_i \to F_{ij}}(y_i) \right\}$$

$$= \min_{y_i \in \mathcal{Y}_i} \left\{ E_{ij}(y_i, y_j) + \sum_{F \in M(i) \setminus \{F_{ij}, F_i\}} r_{F \to Y_i}(y_i) + r_{F_i \to Y_i}(y_i) \right\}$$

$$= \min_{y_i \in \mathcal{Y}_i} \left\{ (E_i(y_i) + \sum_{F \in M(i) \setminus \{F_{ij}, F_i\}} r_{F \to Y_i}(y_i)) + E_{ij}(y_i, y_j) \right\}$$

$$= \min_{y_i \in \mathcal{Y}_i} \left\{ (\theta_{i;y_i} + \sum_{s \in N(F) \setminus \{i,j\}, F \in M(i)} M_{si;y_i}) + \theta_{ij;y_iy_j} \right\} = M_{ij;y_j} .$$

$$Y_l \longrightarrow Y_i \longrightarrow Y_j$$

IN2245 - Combinatorial Optimization in Computer Vision

10. Tree-reweighted Message Passing & Mean Field Methods – 7 / 32

Reparameterization

Assuming two parameterization θ and $\bar{\theta}$, if they define the same energy function, i.e. $E(\mathbf{y}; \theta) = E(\mathbf{y}; \bar{\theta})$ for all $\mathbf{y} \in \mathcal{Y}$, denoted by $\theta \equiv \bar{\theta}$, then θ is called a reparameterization of $\bar{\theta}$.

Note that this condition does not necessarily imply that $\theta = \bar{\theta}$. Indeed, any message vector $M = \{M_{st}\}$ defines reparameterization $\theta = \bar{\theta}[M]$ as follows:

$$\begin{split} \theta_i = & \bar{\theta}_i + \sum_{(i,j) \in \mathcal{E}} M_{ij} \\ \theta_{ij;ab} = & \bar{\theta}_{ij;ab} - M_{ij;b} - M_{ji;a} \\ \theta_{\mathsf{const}} = & \bar{\theta}_{\mathsf{const}} \end{split}$$

In belief propagation (BP) we can alternatively store the reparameterization $\theta = \bar{\theta}[M]$ instead of $\bar{\theta}$ and M. Namely, sending a message from node i to j is equivalent to reparameterizing vectors θ_i and θ_{ij} .

IN2245 - Combinatorial Optimization in Computer Vision

10. Tree-reweighted Message Passing & Mean Field Methods – 8 / 32

Normal form

A message for an edge $(i, j) \in \mathcal{E}$ is called valid if any update does not change M_{ij} . A message for $(i, j) \in \mathcal{E}$ is valid iff

$$\min_{a \in \mathcal{V}_i} \{ \theta_{i;a} + \theta_{ij;ab} \} = \mathsf{const}_{ij} \quad \forall b \in \mathcal{Y}_j \ .$$

That is a message from s to t does not change θ_{ij} and θ_i . We say that θ is in a **normal form** if all messages are valid. Minimum value of the energy is given by $\Phi(\theta) = \min_{\mathbf{y} \in \mathcal{Y}} E(\mathbf{y}; \theta)$ and the min-marginals for nodes and edges are given by

$$\Phi_{i;a}(\theta) = \min_{\mathbf{y} \in \mathcal{Y}, y_i = a} E(\mathbf{y}; \theta) \quad \text{and} \quad \Phi_{ij;ab}(\theta) = \min_{\mathbf{y} \in \mathcal{Y}, y_i = a, y_i = b} E(\mathbf{y}; \theta) \ .$$

For a tree-structured graph the values $\theta_{i;a}$ and $\theta_{ij;ab}$ for vector θ in a normal correspond to min-marginals (up to a constant):

$$\Phi_{i;a}(\theta) = \theta_{i;a} + \text{const}_{i}
\Phi_{ij;ab}(\theta) = \{\theta_{i;a} + \theta_{ij;ab} + \theta_{j;b}\} + \text{const}_{ij}$$
(2)

IN2245 - Combinatorial Optimization in Computer Vision

10. Tree-reweighted Message Passing & Mean Field Methods – 9 / 32

LP relaxation

In general, energy minimization (1) is NP-hard. Therefore, one can focused on approximation, such as **linear programming relaxation**. The constraint set is as follows:

The following minimization problem yields a lower bound on $\Phi(\bar{\theta})$:

$$\min_{ au \in \mathcal{L}(\mathcal{G})} \langle \bar{ heta}, au
angle \ .$$
 (3)

IN2245 - Combinatorial Optimization in Computer Vision

10. Tree-reweighted Message Passing & Mean Field Methods -10/32

Convex combinations of trees

We need to introduce some notation. Let \mathcal{T} be a collection of trees in graph \mathcal{G} and $\rho^T > 0$, $T \in \mathcal{T}$ be some distribution on \mathcal{T} . We assume that each edge is covered by at least one tree.

For a given tree $T = (\mathcal{V}^T, \mathcal{E}^T)$ we define a set of indexes associated with vertices and edges in the tree:

$$\mathcal{I}^T = \{\mathsf{const}\} \cup \{(i; a) \mid i \in \mathcal{V}^T\} \cup \{(ij; ab) \mid (i, j) \in \mathcal{E}^T\} \ .$$

To each tree $T \in \mathcal{T}$, we associate an energy parameter θ^T belonging to the following linear constraint set:

$$\mathcal{A}^T = \{ \theta^T \in \mathbb{R}^d \mid \theta_{\alpha}^T = 0 \ \forall \alpha \in \mathcal{I} \backslash \mathcal{I}^T \} \ .$$

By concatenating all of the tree vectors, we get a vector $\theta = \{\theta^T \mid T \in \mathcal{T}\} \in \mathbb{R}^{d \times |\mathcal{T}|}$ belonging to the constraint set

$$\mathcal{A} = \{ \boldsymbol{\theta} \in \mathbb{R}^{d \times |\mathcal{T}|} \mid \boldsymbol{\theta}^T \in \mathcal{A}^T \text{ for all } T \in \mathcal{T} \}$$
 .

IN2245 - Combinatorial Optimization in Computer Vision

10. Tree-reweighted Message Passing & Mean Field Methods – 11 / 32

Convex combinations of trees

Consider function $\Phi_{\rho}: \mathcal{A} \to \mathbb{R}$ defined as follows:

$$\Phi_{\rho}(\boldsymbol{\theta}) = \sum_{T} \rho^{T} \Phi(\boldsymbol{\theta}^{T}) = \sum_{T} \rho^{T} \min_{\mathbf{y} \in \mathcal{Y}} \langle \boldsymbol{\theta}^{T}, \phi(\mathbf{y}) \rangle .$$

Let $\bar{\theta} = \sum_T \rho^T \theta^T$, then

$$\begin{split} \Phi_{\rho}(\boldsymbol{\theta}) &= \sum_{T} \rho^{T} \Phi(\boldsymbol{\theta}^{T}) = \mathbb{E}[\Phi(\boldsymbol{\theta}^{T})] \leqslant \Phi(\mathbb{E}[\boldsymbol{\theta}^{T}]) = \min_{\mathbf{y} \in \mathcal{Y}} \langle \mathbb{E}[\boldsymbol{\theta}^{T}], \phi(\mathbf{y}) \rangle \\ &= \min_{\mathbf{y} \in \mathcal{Y}} \langle \sum_{T} \rho^{T} \boldsymbol{\theta}^{T}, \phi(\mathbf{y}) \rangle = \min_{\mathbf{y} \in \mathcal{Y}} \langle \sum_{T} \rho^{T} \boldsymbol{\theta}^{T}, \phi(\mathbf{y}) \rangle = \Phi(\bar{\boldsymbol{\theta}}) \;. \end{split}$$

To get the tightest bound we can consider the following maximization problem:

$$\max_{\boldsymbol{\theta} \in \mathcal{A}, \sum_{T} \rho^{T} \theta^{T} = \bar{\theta}} \Phi_{\rho}(\boldsymbol{\theta}) . \tag{4}$$

IN2245 - Combinatorial Optimization in Computer Vision

10. Tree-reweighted Message Passing & Mean Field Methods – 12 / 32

New Tree-reweighing message passing

Theorem 1. Minimization problem (3) is the dual to maximization problem (4). Strong duality holds, so their optimal values coincide.

$$\min_{\tau \in \mathcal{L}(\mathcal{G})} \langle \bar{\theta}, \tau \rangle \qquad \Longleftrightarrow \qquad \max_{\boldsymbol{\theta} \in \mathcal{A}, \sum_{T} \rho^{T} \boldsymbol{\theta}^{T} = \bar{\boldsymbol{\theta}}} \Phi_{\rho}(\boldsymbol{\theta})$$

The maximization problem (4) is modified by replacing the constraint as

$$\max_{\boldsymbol{\theta} \in \mathcal{A}, \sum_{T} \rho^{T} \theta^{T} \equiv \bar{\theta}} \Phi_{\rho}(\boldsymbol{\theta}) . \tag{5}$$

Theorem 2. The optimal value of problem (5) equals to the optimal value of problem (4).

The goal of the reparameterization step is to make sure that the algorithm satisfies the min-marginal property.

IN2245 - Combinatorial Optimization in Computer Vision

10. Tree-reweighted Message Passing & Mean Field Methods – 13 / 32

Weak tree agreement

Let $\mathsf{OPT}^T(\theta^T)$ be the set of optimal configurations for parameter θ^T and $\mathsf{OPT}(\boldsymbol{\theta}) = \{\mathsf{OPT}^T(\theta^T) \mid T \in \mathcal{T}\} \in (2^{\mathcal{Y}})^{|\mathcal{T}|}$. For two collections $\mathbb{S}, \tilde{\mathbb{S}} \in (2^{\mathcal{Y}})^{|\mathcal{T}|}$, we write $\mathbb{S} \subseteq \tilde{\mathbb{S}}$ if $\mathbb{S}^T \subseteq \tilde{\mathbb{S}}^T$ for every tree T.

 $\mathbb S$ is **consistent** if it satisfies the following three conditions:

- 1. For every tree T set \mathbb{S}^T is non-empty.
- 2. If node i is contained in trees T and T', then for all $\mathbf{y} \in \mathbb{S}^T$ there exists configuration $\mathbf{y}' \in \mathbb{S}^{T'}$ which agrees with \mathbf{y} on node i, i.e. $y_i = y_i'$.
- 3. If edge (i, j) is contained in trees T and T', then for all $\mathbf{y} \in \mathbb{S}^T$ there exists configuration $\mathbf{y}' \in \mathbb{S}^{T'}$ which agrees with \mathbf{y} on nodes i and j, i.e. $y_i = y'_i, y_j = y'_j$.

Vector $\theta = \{\theta^T\} \in \mathcal{A}$ is said to satisfy the **weak tree agreement condition** if there exists collection $\mathbb{S} \subseteq \mathsf{OPT}(\theta)$ which is consistent.

If a vector θ satisfies the WTA condition, then the TRW-S algorithm will not make any progress, i.e. it will not increase function Φ_{ρ} .

IN2245 - Combinatorial Optimization in Computer Vision

10. Tree-reweighted Message Passing & Mean Field Methods – 14 / 32

TRW-S algorithm

- 0. Initialize θ so that $\theta \in \mathcal{A}$ and $\sum_{T} \rho^{T} \theta^{T} \equiv \bar{\theta}$.
- 1. Select some order for nodes and edges in $\mathcal{V} \cup \mathcal{E}$. For each element $\omega \in \mathcal{V} \cup \mathcal{E}$ find all trees $\mathcal{T}_{\omega} \subseteq \mathcal{T}$ containing ω . If there is more than one tree, then do the following:
 - (a) For all trees $T \in \mathcal{T}_{\omega}$ reparameterize θ^T such that values $\theta^T_{i;a}$ (if $\omega = i$ is a node) or $\theta^T_{i;a} + \theta^T_{ij;ab} \theta^T_{j;b}$ (if $\omega = (i,j)$ is an edge) give correct min-marginals for tree T.
 - (b) "Averaging operation": If $\omega=i$ is a node then set $\theta_i^T:=\frac{1}{\rho_i}\sum_{T\in\mathcal{T}_i}\rho^T\theta_i^T$ for trees $T\in\mathcal{T}_i$ If $\omega=(i,j)$ is an edge then set $\theta_i^T,\theta_{ij}^T,\theta_j^T$ for trees $T\in\mathcal{T}_{ij}$ so that

$$(\theta_{i;a}^{T} + \theta_{ij;ab}^{T} + \theta_{j;b}^{T}) = \frac{1}{\rho_{ij}} \sum_{T \in \mathcal{T}_{ij}} (\theta_{i;a}^{T} + \theta_{ij;ab}^{T} + \theta_{j;b}^{T})$$

2. Check whether a stopping criterion is satisfied; if yes, terminate, otherwise go to step 1.

IN2245 - Combinatorial Optimization in Computer Vision

10. Tree-reweighted Message Passing & Mean Field Methods – 15 / 32

Mean Field methods 16 / 32

KL divergence

Assume two discrete probability distributions P and Q. One way to measure the difference between P and Q is to calculate the Kullback-Leibler (KL) divergence (a.k.a. relative entropy) defined as

$$D_{\mathrm{KL}}(P||Q) = \sum_{i} P(i) \log \frac{P(i)}{Q(i)} = \sum_{i} P(i) \log P(i) - \sum_{i} P(i) \log Q(i)$$
$$= \mathbb{E}_{P}[\log P(i)] - \mathbb{E}_{P}[\log Q(i)].$$

It is defined iff Q(i) = 0 implies P(i) = 0, for all i. If P(i) = 0, then the ith term is interpreted as 0. The KL divergence is always non-negative, moreover $D_{\mathrm{KL}}(P\|Q) = 0$ iff P = Q almost everywhere.

Interpretation (Information Theory): it is the amount of information lost when Q is used to approximate P. It measures the expected number of extra bits required to code samples from P using a code optimized for Q rather than the code optimized for P.

IN2245 - Combinatorial Optimization in Computer Vision

10. Tree-reweighted Message Passing & Mean Field Methods – 17 / 32

Motivation

For general (discrete) factor graph models, performing *probabilistic inference* is hard. Assume we are given an **intractable** distribution $p(y \mid x)$. We consider an **approximate distribution** q(y), which is tractable, for $p(y \mid x)$.

One way of finding the best approximating distribution is to pose it as an **optimization problem** over probability distributions: given a distribution $p(y \mid x)$ and a family Q of tractable distributions $q \in Q$ on \mathcal{Y} , we want to solve

$$q^* \in \underset{q \in Q}{\operatorname{argmin}} D_{\mathrm{KL}}(q(y) \| p(y \mid x)) = \underset{q \in Q}{\operatorname{argmin}} \sum_{y \in \mathcal{Y}} q(y) \log \frac{q(y)}{p(y \mid x)}$$
$$= \underset{q \in Q}{\operatorname{argmin}} \left\{ \underbrace{\sum_{y \in \mathcal{Y}} q(y) \log q(y)}_{-H(q)} - \sum_{y \in \mathcal{Y}} q(y) \log p(y \mid x) \right\}.$$

The term $-\sum_{y\in\mathcal{Y}}q(y)\log q(y)\stackrel{\Delta}{=}H(q)$ is called the **entropy** of the distribution q.

Mean Field methods

$$\begin{split} D_{\mathrm{KL}}(q(y) \| p(y \mid x)) &= -H(q) - \sum_{y \in \mathcal{Y}} q(y) \log p(y \mid x) \\ &= -H(q) - \sum_{y \in \mathcal{Y}} q(y) \log \frac{1}{Z(x)} \prod_{F \in \mathcal{F}} \exp(-E_F(y_F; x_F)) \\ &= -H(q) + \sum_{y \in \mathcal{Y}} \sum_{q \in \mathcal{Y}_F} \sum_{\substack{y' \in \mathcal{Y}, \\ y'_F = y_F}} q(y) \sum_{F \in \mathcal{F}} \sum_{q \in \mathcal{Y}_F} \sum_{q \in \mathcal{Y}_F} p(y_F; x_F) + \log Z(x) \\ &= -H(q) + \sum_{F \in \mathcal{F}} \sum_{q \in \mathcal{Y}_F} \sum_{q \in \mathcal{Y}_F} p(q) \sum_{q \in \mathcal{Y}_F} p(q$$

where $\mu_{F,y_F}(q) = \sum_{y' \in \mathcal{Y}, y'_F = y_F} q(y)$ are the marginals of q.

IN2245 - Combinatorial Optimization in Computer Vision

10. Tree-reweighted Message Passing & Mean Field Methods - 19 / 32

Gibbs inequality

If the set Q is rich enough to contain a close approximation to $p(y \mid x)$ and we succeed at finding it, then the marginals of q^* will provide a good approximation to the true marginals of $p(y \mid x)$ that are intractable to compute.

Gibbs inequality provides a lower bound on the log partition function.

$$0 \leq D_{\mathrm{KL}}(q(y) \| p(y \mid x)) = -H(q) + \sum_{F \in \mathcal{F}} \sum_{y_F \in \mathcal{Y}_F} \mu_{F,y_F}(q) E_F(y_F; x_F) + \log Z(x)$$
$$\log Z(x) \geq H(q) - \sum_{F \in \mathcal{F}} \sum_{y_F \in \mathcal{Y}_F} \mu_{F,y_F}(q) E_F(y_F; x_F) .$$

IN2245 - Combinatorial Optimization in Computer Vision

10. Tree-reweighted Message Passing & Mean Field Methods – 20 / 32

Naive mean field

Take a set Q as the set of all distributions in the form:

$$q(y) = \prod_{i \in \mathcal{V}} q_i(y_i) .$$

For example, in case of the following factor graph:

IN2245 - Combinatorial Optimization in Computer Vision

10. Tree-reweighted Message Passing & Mean Field Methods – 21 / 32

Naive mean field

Set Q consists of all distributions in the form:

$$q(y) = \prod_{i \in \mathcal{V}} q_i(y_i) .$$

Marginals μ_{F,y_F} take the form

$$\mu_{F,y_F}(q) = \sum_{\substack{y' \in \mathcal{Y}, \\ y'_F = y_F}} q(y) = q_{N(F)}(y_F) = \prod_{i \in N(F)} q_i(y_i) .$$

Entropy H(q) decomposes as

$$H(q) = \sum_{i \in \mathcal{V}} H_i(q_i) = -\sum_{i \in \mathcal{V}} \sum_{y_i \in \mathcal{Y}_i} q_i(y_i) \log q_i(y_i) .$$

Proof. Exercise.

IN2245 - Combinatorial Optimization in Computer Vision

10. Tree-reweighted Message Passing & Mean Field Methods – 22 / 32

Naive Mean Field

Putting it together,

$$\begin{split} & q^* \in \underset{q \in Q}{\operatorname{argmin}} D_{\mathrm{KL}}(q(y) \| p(y \mid x)) \\ & = \underset{q \in Q}{\operatorname{argmin}} \left\{ -H(q) + \sum_{F \in \mathcal{F}} \sum_{y_F \in \mathcal{Y}_F} \mu_{F,y_F}(q) E_F(y_F; x_F) + \log Z(x) \right\} \\ & = \underset{q \in Q}{\operatorname{argmax}} \left\{ H(q) - \sum_{F \in \mathcal{F}} \sum_{y_F \in \mathcal{Y}_F} \mu_{F,y_F}(q) E_F(y_F; x_F) \right\} \\ & = \underset{q \in Q}{\operatorname{argmax}} \left\{ - \sum_{i \in \mathcal{V}} \sum_{y_i \in \mathcal{Y}_i} q_i(y_i) \log q_i(y_i) - \sum_{F \in \mathcal{F}} \sum_{y_F \in \mathcal{Y}_F} \left(\prod_{i \in N(F)} q_i(y_i) \right) E_F(y_F; x_F) \right\}. \end{split}$$

IN2245 - Combinatorial Optimization in Computer Vision

Optimizing over Q means to optimize over all q_i such that $q_i(y_i)\geqslant 0$ and $\sum_{y_i\in\mathcal{Y}_i}q_i(y_i)=1$ for all $i\in\mathcal{V}$.

10. Tree-reweighted Message Passing & Mean Field Methods – 23 / 32

Optimization

$$\underset{q \in Q}{\operatorname{argmax}} \left\{ -\sum_{i \in \mathcal{V}} \sum_{y_i \in \mathcal{Y}_i} q_i(y_i) \log q_i(y_i) - \sum_{F \in \mathcal{F}} \sum_{y_F \in \mathcal{Y}_F} \left(\prod_{i \in N(F)} q_i(y_i) \right) E_F(y_F; x_F) \right\}.$$

The entropy term is concave and the second term is non-concave due to products of variables occurring in the expression. Therefore solving this non-concave maximization problem globally is in general hard.

Remedy: block coordinate ascent

We hold all variables fixed except for a single block q_m , then we obtain a tractable concave maximization problem

 \rightarrow closed-form update for each q_m .

IN2245 - Combinatorial Optimization in Computer Vision

10. Tree-reweighted Message Passing & Mean Field Methods -24 / 32

Lagrange multipliers

To obtain closed form solution, we define the Lagrangian function:

$$L(q_i, \lambda) = \left\{ -\sum_{i \in \mathcal{V}} \sum_{y_i \in \mathcal{Y}_i} q_i(y_i) \log q_i(y_i) \right\}$$

$$-\sum_{F\in\mathcal{F}}\sum_{y_F\in\mathcal{Y}_F} \left(\prod_{i\in N(F)} q_i(y_i)\right) E_F(y_F; x_F) + \lambda \left(\sum_{y_i\in\mathcal{Y}_i} q_i(y_i) - 1\right) \right\}.$$

Setting the derivatives of L w.r.t. q_i to 0, we obtain

$$\frac{\partial L}{\partial q_i(y_i)} = 0 = -\left(\log q_i(y_i) + 1\right) - \sum_{F \in M(i)} \sum_{\substack{y_F' \in \mathcal{Y}_F, \\ y_i' = y_i}} \left(\prod_{j \in N(F) \setminus \{i\}} \hat{q}_j(y_j)\right) E_F(y_F; x_F) + \lambda$$
$$q_i^*(y_i) = \exp\left(-1 - \sum_{F \in M(i)} \sum_{\substack{y_F' \in \mathcal{Y}_F, \\ y_i' = y_i}} \left(\prod_{j \in N(F) \setminus \{i\}} \hat{q}_j(y_j)\right) E_F(y_F; x_F) + \lambda\right).$$

$$q_i^*(y_i) = \exp\left(-1 - \sum_{F \in M(i)} \sum_{\substack{y_F' \in \mathcal{Y}_F, \\ y_i' = y_i}} \left(\prod_{j \in N(F) \setminus \{i\}} \hat{q}_j(y_j)\right) E_F(y_F; x_F) + \lambda\right).$$

IN2245 - Combinatorial Optimization in Computer Vision

10. Tree-reweighted Message Passing & Mean Field Methods – 25 / 32

Lagrange multipliers

 λ can be calculated as follows.

$$\sum_{y_i \in \mathcal{Y}_i} q_i(y_i) = \sum_{y_i \in \mathcal{Y}_i} \exp\left(-1 - \sum_{F \in M(i)} \sum_{y_F' \in \mathcal{Y}_F, \ j \in N(F) \setminus \{i\}} \hat{q}_j(y_j)\right) E_F(y_F; x_F) + \lambda\right)$$

$$\exp(1 - \lambda) = \sum_{y_i \in \mathcal{Y}_i} \exp\left(-\sum_{F \in M(i)} \sum_{y_F' \in \mathcal{Y}_F, y_i' = y_i} \left(\prod_{j \in N(F) \setminus \{i\}} \hat{q}_j(y_j)\right) E_F(y_F; x_F)\right)$$

$$Z_i(x_F)$$

$$\lambda - 1 = -\log Z_i(x_F),$$

where $Z_i(x_F)$ is a normalizing constant for q_i .

IN2245 - Combinatorial Optimization in Computer Vision

10. Tree-reweighted Message Passing & Mean Field Methods – 26 / 32

Update equation

By substituting, we obtain the obtain equation for the Naive Mean Field method

$$q_i^*(y_i) = \exp\left(-\sum_{F \in M(i)} \sum_{\substack{y_F' \in \mathcal{Y}_F, \\ y_i' = y_i}} \left(\prod_{j \in N(F) \setminus \{i\}} \hat{q}_j(y_j)\right) E_F(y_F; x_F) - \log Z_i(x_F)\right)$$

$$= \frac{1}{Z_i(x_F)} \exp\left(-\sum_{F \in M(i)} \sum_{\substack{y_F' \in \mathcal{Y}_F, \\ y_i' = y_i}} \left(\prod_{j \in N(F) \setminus \{i\}} \hat{q}_j(y_j)\right) E_F(y_F; x_F)\right).$$

IN2245 - Combinatorial Optimization in Computer Vision

10. Tree-reweighted Message Passing & Mean Field Methods – 27 / 32

Semantic segmentation

Krähenbühl and Koltun proposed an efficient approximate inference in fully connected CRF model by applying Naive Mean Field approach.

Semantic segmentation: assign a label from the set of labels $\mathcal{L} = \{l_1, l_2, \dots, l_k\}$ for each pixel on the image regarding their semantic meaning.

For each pixel on the image a random variable is assigned taking a value from \mathcal{L} . A fully connected pairwise CRF model $\mathcal{G}=(\mathcal{V},\mathcal{E})$ is considered, where the corresponding energy function is given by

$$E(\mathbf{y}) = \sum_{i \in \mathcal{V}} E_i(y_i) + \sum_{(i,j) \in \mathcal{E}} E_{ij}(y_i, y_j) ,$$

where $\mathcal{E} = \{(i, j) \in \mathcal{V} \times \mathcal{V} \mid i < j\}.$

IN2245 - Combinatorial Optimization in Computer Vision

10. Tree-reweighted Message Passing & Mean Field Methods – 28 / 32

Energy functions

- Unary energies $E_i(y_i)$ are computed independently for each pixel as $E_i(y_i) = -\log P_i(y_i)$ measures the degree of disagreement between labelling y_i and the image at pixel i.
- Pairwise energies (so-called contrast sensitive Potts-model), measuring the extent to which the labelling y is not piecewise smooth, have the form $(p_i \text{ and } I_i \text{ denote the pixel coordinates and intensity, resp.)}$

$$E_{ij}(y_i, y_j) = [y_i \neq y_j] \sum_m w^{(m)} k^{(m)}(\mathbf{f}_i, \mathbf{f}_j)$$

$$= [y_i \neq y_j] \sum_m w^{(m)} \exp\left(-\frac{1}{2}(\mathbf{f}_i - \mathbf{f}_j)^T \mathbf{\Lambda}^{(m)}(\mathbf{f}_i - \mathbf{f}_j)\right)$$

$$= [y_i \neq y_j] \left\{ w^{(1)} \exp\left(-\frac{|p_i - p_j|^2}{2\theta_\alpha^2} - \frac{|I_i - I_j|^2}{2\theta_\beta^2}\right) + w^{(2)} \exp\left(-\frac{|p_i - p_j|^2}{2\theta_\alpha^2}\right) \right\}.$$

The parameters θ_{α} , θ_{β} and θ_{γ} are estimated on a set of training images.

IN2245 - Combinatorial Optimization in Computer Vision

10. Tree-reweighted Message Passing & Mean Field Methods – 29 / 32

Inference

The inference is based on Naive Mean Field approximation, where the update equation is given by

$$q_i(y_i) = \frac{1}{Z_i} \exp \left\{ -E_i(y_i) - \sum_{l' \in \mathcal{L}} [[y_i \neq y_j]] \sum_{m=1}^K w^{(m)} \sum_{i \neq j} k^{(m)} (\mathbf{f}_i, \mathbf{f}_j) q_j(l') \right\}.$$

The inference is performed in average 0.2 seconds for 500.000 variables (in contrast to 36 hours).

The main idea: the message passing step can be expressed as a convolution with a Gaussian kernel $G_{\Lambda^{(m)}}$ in feature space:

$$\sum_{j \in \mathcal{V}} k^{(m)}(\mathbf{f}_i, \mathbf{f}_j) q_j(l) - q_i(l) = [G_{\mathbf{\Lambda}^{(m)}} * q(l)](\mathbf{f}_i) - q_i(l) .$$

Note that the convolution sums over all variables, while message passing does not sum over q_i . This convolution can be efficiently calculated in $\mathcal{O}(|\mathcal{V}|)$ time (instead of $\mathcal{O}(|\mathcal{V}|^2)$).

Structured Mean Field

To improve the approximation of naive mean field one can take larger (tractable) subgraph of the original factor graph, which leads to the **structured mean field** approach.

- Three chains are used and six factors are approximated
- For each component the mean field update can be performed efficiently if inference for the component is tractable

The resulting family Q of distributions is *richer* and therefore the approximation is improved.

Compared to the naive mean field approximation the entropies H(q) now decompose over the subgraphs instead of individual variables.

IN2245 - Combinatorial Optimization in Computer Vision

10. Tree-reweighted Message Passing & Mean Field Methods – 31 / 32

Literature

- Martin J. Wainwright, Tommi S. Jaakkola, and Alan S. Willsky. **MAP Estimation Via Agreement on Trees: Message-Passing and Linear Programming**. In *IEEE Transactions on Information Theory*, vol. 51(11), pp. 3697–3717, November 2005.
- Vladimir Kolmogorov. Convergent Tree-reweighted Message Passing for Energy Minimization. In *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 28(10), pp. 1568-1583, October 2006.
- Sebastian Nowozin and Christoph H. Lampert. **Structured Prediction and Learning in Computer Vision**. In *Foundations and Trends in Computer Graphics and Vision*, Volume 6, Number 3-4. Note: Chapter 3.
- Daphne Koller and Nir Friedman. **Probabilistic Graphical Models: Principles and Techniques**. The MIT Press, 2009. Note: Chapter 11.
- Philipp Krähenbühl and Vladlen Koltun. Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials. In *Proceedings of Advances in Neural Information Processing Systems*, pp. 109–117, Granada, Spain, Dec 2011. MIT Press.

IN2245 - Combinatorial Optimization in Computer Vision

10. Tree-reweighted Message Passing & Mean Field Methods – 32 / 32