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Image Segmentation minimizes a combination of data and length terms.

Epx;λq “
ÿ

iPΩ
fixi ` λ ¨

ÿ

iPΩ

ÿ

jPN piq
fijxix̄j

The quality of the segmentation depends on the weight λ.

It is therefore important to choose λ carefully.

λ “ 0 λ “ 1 λ “ 8

Discretization
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For small λ we obtain more details, but also more noise.
For large λ we obtain smoother results, while over-smoothing the boundary.

Unfortunately, the choice of λ does not only depend on the observed object, but
also on the image resolution.

Downsampling an image by a factor of k reduces the area by a factor of k2 while
reducing the length by a factor of k.

Thus, λ has to be reduced by a factor of k to get the same segmentation.

high resolution low resolution

Dynamic Length Term
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We want to compute the best segmentation for every possible length term:

Epara : r0;8s ÑR
λ ÞÑ min

xPBn
Epx;λq

If we can compute this energy efficiently, we can select a λ ě 0 such that

x˚pλq P argmin
xPBn

Epx;λq

has certain properties like number of connected components, minimizing a
different energy E1, etc.

Epara can help us to transform the discrete domain Bn of segmentations into the
continuous domain r0;8s. This transformation is not invertible!

Parametric Energies
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Given two different pseudo-Boolean energies E0, E1 : Bn Ñ R, we denote by
Epx;λq and Eparapλq the energies

E : Bn ˆ I ÑR Epara : I ÑR
px;λq ÞÑE0pxq ` λ ¨ E1pxq λ ÞÑ min

xPBn
Epx;λq

I Ă R ` t´8,8u describes the domain of the parameter λ. In the following, we
assume that I is chosen in a way that Ep¨, λq is submodular for all λ P I.

In particular we have for sumodular E0

■ I Ă R`
0 ` t8u if E1 is not supermodular

■ I Ă R´
0 ` t´8u if E1 is not submodular

■ I Ă R ` t´8,8u if E1 is modular

Concavity
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Given a binary segmentation x P Bn, the energy Epx;λq is linear in λ.

Hence, Epara is the minimum of finite linear functions.
In other words Eparapλq is a piecewise linear, concave function:

Eparapλq “ min
i“0,...,B

Epxi;λq

We assume that the xi are ordered in a way that for each i ă B, there is an λi

such that

Epxi;λiq “ Epxi`1;λiq.

We call these λi the breakpoints of Epara.

Epara is defined by its B breakpoints λ0, . . . , λB´1.



Parametric Maximum Flow
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Since we only have finite breakpoints λi, it is enough to study Epara on the
bounded subdomain

I0 :“ I X rλ0;λB´1s

Computing all breakpoints could be done by binary search.

To this end we need to know x8 :“ xB P argminxPBn Epx;λq for λ ą λB´1.

In other words

x8 P argmin
xPBn

Epx;8q Ă argmin
xPBn

E1pxq

Finding λ8
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After determining x8, we want to find its breakpoint λ8 :“ λB´1 P I.
We assume I “ r0;8s.
1. Set λ˚ “ 0.
2. Find x˚ P argminxPBn E0pxq “ argminxPBn Epx;λ˚q.
3. Find λ̂ such that Epx˚; λ̂q “ Epx8, λ̂q, i.e.,

λ̂ “ E0px8q ´ E0px˚q
E1px˚q ´ E1px8q ě λ˚

4. Find x̂ P argminxPBn Epx; λ̂q.
5. If Epx̂; λ̂q ă Epx8; λ̂q set px˚, λ˚q :“ px̂, λ̂q and go to Step 3
6. Return λ8 “ λ̂.

Parametric Maximum Flow
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After finding pλ0, x0q, pλ8, x8q, we have to find the remaining breakpoints.

1. Set L “ tptλ0u, x0q, ptλ8u, x8qu.
2. Let pIi, xiq, pIj, xjq P L adjacent with λi :“ max Ii ă min Ij “: λj .
3. Find λ that satisfies Epxi;λq “ Epxj , λq.
4. If λ “ λi set Ij :“ Ij Y rλi;λjs. Go to Step 9.
5. If λ “ λj set Ii :“ Ii Y rλi;λjs. Go to Step 9.
6. Find x̂ P argminxPBn Epx, λq.
7. If x̂ P txi, xju set Ii :“ Ii Y rλi;λs and Ij :“ Ij Y rλ, λjs. Go to Step 9.
8. Set L :“ L ` tptλu, x̂qu.
9. If

Ť
IPL I ‰ rλ0, λ8s go to Step 2.

10. Return L.

Example

Parametric Energies Parametric Maximum Flow Ratio Optimization Length Ratio Optimization

IN2245 - Combinatorial Optimization in Computer Vision 11. Parametric Maximum Flow – 13 / 27

Ratio Optimization
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Example of Ratio Energy
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The motivation for the parametric maximum flow was the need to be independent
of the image discretization. It helps to compute several solutions, which can then
be post-processed.

Nonetheless, this is a rather heuristic approach. It would be better to formulate an
energy that itself does not depend on the discretization.

One example is the ratio of weighted length and weighted area.

R : Bn ÑR

x ÞÑ lengthpxq
areapxq “

ř
iPΩ

ř
jPN piq fijxix̄jř
iPΩ fixi

Discretization Independence

Parametric Energies Parametric Maximum Flow Ratio Optimization Length Ratio Optimization

IN2245 - Combinatorial Optimization in Computer Vision 11. Parametric Maximum Flow – 16 / 27

If we downsample an image I by a factor of k, the ratio energy R is also scaled
down by a factor of k. Nonetheless, the argminR is not changed at all.

In that sense, we have a very different situation than with the parametrized length
term. Instead of scaling different parts of the energy in different ways, the whole
energy is scaled down.

This makes ratio energies very useful in pratice. Nonetheless, it would be difficult
to write this energy in a multilinear way. Potentially, we can end up with
exponential many cliques.

Instead we want to find the smallest r P R such that Ep¨; rq possesses a root
xr P Bn, i.e., Epxr; rq “ 0 with

E : Bn ˆ R ÑR
px; rq ÞÑ lengthpxq ´ r ¨ areapxq



General Ratio Energies
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Given two pseudo-Boolean energies P : Bn Ñ R and Q : Bn Ñ R`
0 , we define its

ratio energy R : Bn Ñ R ` t´8,8u as

Rpxq “

$
’&
’%

P pxq
Qpxq if Qpxq ‰ 0

`8 if Qpxq “ 0 and P pxq ą 0

´8 if Qpxq “ 0 and P pxq ă 0

In order to minimize R, we will use the energy

E : Bn ˆ R ÑR
px; rq ÞÑP pxq ´ r ¨ Qpxq

E is submodular if

1. P is submodular, Q is submodular and r ď 0 or
2. P is submodular, Q is supermodular and r ě 0 or
3. P is submodular, Q is modular

Ratio Optimization
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To minimize R, we will minimize Ep¨; rq for different r P R until we are unable to
decrease r. The obtained r represents the minimal ratio and xr P argminEp¨; rq
its segmentation.

1. Pick x̂ P Bn with Qpx̂q ą 0 and r :“ Rpx̂q.
2. Let x˚ P argminxPBn Epx; rq.
3. If Qpx˚q “ 0 and P px˚q ă 0 go to Step 6.
4. Set r˚ :“ Rpx˚q. If r “ r˚ go to Step 6.
5. Set px̂, rq :“ px˚, r˚q. Go to Step 2.
6. Return x˚ as segmentation of minimal ratio.

This method solves the ratio problem for the following situations

1. P is submodular, Q is submodular and P px̂q ă 0 in Step 1.
2. P is submodular, Q is supermodular and P pxq ě 0 for all x P Bn.
3. P is submodular, Q is modular

Results
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Images
lengpSq
areapSq

areaf pSq
lenpSq

areaf pSq
lengpSq

fluxpSq
lenpSq

fluxpSq “
ż

BS
xNpsq,∇Ipsqyds “

ż

S
∆Ipxqdx

Length Ratio Optimization
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If we want to minimize the ratio

Rpxq “ len1pxq
len2pxq

of two length terms len1 and len2, we cannot use the parametric maximum flow
framework. This is because len1pxq ě 0 for all segmentations x P Bn.

Jermyn and Ishikawa showed that this problem can nonetheless be optimized with
a different approach that only considers closed paths p P BE of a digraph
G “ pV, Eq with two length weights c1, c2 : E Ñ R`.

The method only works for ratios of length terms. We cannot replace len1 or len2
by arbitrary quadratic submodular energies.

In particular, we cannot combine data terms with length terms.

Method of Jermyn-Ishikawa
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To minimize Rppq “ len1ppq
len2ppq , we will not minimize

Epp; rq “ len1ppq ´ r len2ppq.
Instead, we will look for p P BE such that Epp; rq ď 0.

1. Pick closed path p P BE and r :“ Rppq.
2. Find closed path p˚ P BE such that Epp˚; rq ă 0.
3. If p˚ does not exist, go to Step 5
4. Set pp, rq :“ pp˚, Rpp˚qq. Go to Step 2.
5. Return p as closed path of minimal length ratio.

This method solves the ratio problem, if there is an efficient way to compute the
negative cycle in Step 2.

Reminder: Bellman-Ford Algorithm
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Given the current ratio r, we define the following weighting function c : E Ñ R on
the edges: cpi, jq “ c1pi, jq ´ r ¨ c2pi, jq.
Assuming that there exists no cycle of negative length, the Bellman-Ford algrithm
can compute the shortest path between a source node s and all other nodes v P V
in the graph. The worst case running time is Op|V | ¨ |E|q.
Applying the same method to a graph with a negative cycle p will never terminate.
Instead every path tries to pass through p as often as possible in order to reduce
the distance even further.

Running Bellman-Ford for Op|V | ¨ |E|q time either provides us with a shortest path
or not. In the first case there is no negative cycle in the graph. In the second case,
the negative cycle will appear in the degenerated Dijkstra tree that the
Bellman-Ford algorithm maintains.

Shape Prior Image Segmentation
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Using Bayes’ rule, we can write any image segmentation problem as a probability
maximization problem

P px|Iq “ P pI|xq ¨ P pxq
P pIq

The likelihood P pI|xq tells us how well a segmentation x P Bn fits to the observed
image I.

The prior P pxq tells us how likely a certain segmentation x P Bn is. It does not
depend on the observation. The MRF model for example favors small contours.

If we expect a certain contour, we can also encode this knowledge into our
optimization framework. We call this prior shape prior if it is invariant with
respect to translation, rotation and scaling.



Modelling Shape Prior

Parametric Energies Parametric Maximum Flow Ratio Optimization Length Ratio Optimization

IN2245 - Combinatorial Optimization in Computer Vision 11. Parametric Maximum Flow – 25 / 27

A closed contour p in a digraph G “ pV, Eq with V Ă R2 connects vertices in a
certain order. If we want additionally that p looks similar to a certain closed
contour C, we have to find for each vertex of p a corresponding vertex of C.

Therefore, we have two information for every point on p, the position in V and the
position in C. In other words, we are looking for a shortest path in the 3D space
C ˆ V .

shape model image

Optimizing Shape Prior
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Product Space Output
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