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Any binary image segmentation can be modeled as x P Bn.

Usually we minimize an energy of the form

Epxq “
nÿ

i“1

fixi `
nÿ

i“1

ÿ

jPN piq
fijxix̄j

We can rewrite every pairwise term into a symmetric pairwise term using:

xȳ “1

2
xȳ ` 1

2
p1 ´ x̄qp1 ´ yq

“1

2
pxȳ ` x̄y ` x ´ yq

We can therefore assume that fi,j “ fj,i ě 0 for all i “ 1, . . . , n and j P N piq.
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The binary image segmention energy can be written as

Epxq “
nÿ

i“1,
xi“0

f
p0q
i `

nÿ

i“1,
xi“1

f
p1q
i `

nÿ

i“1

ÿ

jPN piq
fijδxi,xj

δxi,xj “
#
0 if xi “ xj

1 if xi ‰ xj

Thus, we can rewrite it as

Epxq “
nÿ

i“1

fipxiq `
nÿ

i“1

ÿ

jPN piq
fijpxi, xjq

Probabilistic Interpretation
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Minimizing

Epxq “
nÿ

i“1

fipxiq `
nÿ

i“1

ÿ

jPN piq
fijpxi, xjq

is the same as maximizing the conditional distribution (see Lecture 4)

P pxq9
nź

i“1

exp p´fipxiqq ¨
nź

i“1

ź

jPN piq
exp p´fijpxi, xjqq

The idea of multilabel optimization is to replace x P Bn by x P Ln,
where L is called the label space.

Data Terms
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Unary potentials Ψipxiq of a graphical model and data terms fipxiq are related to
one another via

Ψipxiq9 exp p´fipxiqq

The unary potentials are the values of a probability density function and hence, we
usually have Ψpxiq ą 0.

Therefore, we have fipxiq P R. In other words, we want to allow positive and
negative values alike for the data terms of a multilabeling problem.

If we model the unary potential as a Gaussian distribution or Laplacian
distribution, the data term measures a quadratic resp. linear distance from the
parameter µ.

Pairwise Terms
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Pairwise potentials Ψi,jpxi, xjq of a graphical model and data terms fijpxi, xjq are
related to one another via

Ψi,jpxi, xjq9 exp p´fi,jpxi, xjqq .

In order to avoid supermodular terms for binary segmentation, we assumed fi,j ě 0
or equivalently Ψi,j ď 1. Thus, we cannot use a probability density function and
have to model a discrete probability space. For that reason, we assume that we
only have finite many labels in L.

The conditional random field framework assumes that we have

fi,jpxi, xjq “ ci,j ¨ dpxi, xjq,
where ci,j may depend on the observation (image gradient, ...) and dp¨, ¨q is a
pairwise prior on the label space.



Modeling the Pairwise Term
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A straightforward extension of the length term for binary segmentation is the
Potts Model

d : L ˆ L ÑR`
0 pℓ1, ℓ2q ÞÑ

#
1 if ℓ1 ‰ ℓ2

0 if ℓ1 “ ℓ2

If we assume that L Ă R, we can also use the Linear Model or L1 Model

d : L ˆ L ÑR`
0 pℓ1, ℓ2q ÞÑ |ℓ1 ´ ℓ2|

For p ą 0, we can define the Lp Model as

d : L ˆ L ÑR`
0 pℓ1, ℓ2q ÞÑ |ℓ1 ´ ℓ2|p

Note that the Potts model can be seen as the Lp model for p “ 0.

In addition, we observe that the Lp model is convex iff p ě 1.

Multi-object Segmentation
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Annotated RGB Image Depth Image

RGB-Based Segmentation RGB-D-Based Segmentation

Multilabel on Forests

Multilabel NP-hardness Convex Prior

IN2245 - Combinatorial Optimization in Computer Vision 12. Multilabel Optimization – 11 / 25

If the graphical model on which we want to solve the multilabel problem is a tree,
we can apply the Belief Propagation approach.

We can still solve the multilabel problem if the graphical model is a forest, i.e., a
disjoint union of trees. In this case, each tree can be optimized independently of
the other trees.

One example of a forest is the lack of any pairwise potentials. In that case, each
variable can be optimized independently of the other variables. This is a similar
behavior to the modular functions in the binary case.

Since we usually use a graph model that does not form a tree (or forest), we have
to study when the derived energy can be globally optimized.

NP-hardness
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Given an undirected graph G “ pV, E , cq with vertex set V , edge set E and
weighting function c : E Ñ R`

0 , one can define the multiway cut problem, which
generalizes the graph cut problem.

Let s0, . . . , sk´1 P V be terminal nodes. We call C Ă E a multiway cut, iff any
two nodes si and sj are disconnected in pV, E ´ Cq.
The cut value of a multiway cut is

CutpCq “
ÿ

pi,jqPC
cpi, jq.

This coincides with the graph cut problem if k “ 2 by setting C :“ E X S ˆ T if
pS, T q is the cut of the graph.

NP-hardness of the Potts Model
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It was shown that the multiway cut problem is NP-hard if we use k ě 3 terminal
nodes. Nonetheless, one can find a p2 ´ 2

k q approximation.

Interestingly, every multiway cut problem can be translated into an MRF problem
using the Potts model. In other words, any polynomial time algorithm of the Potts
model would also solve the multiway cut problem. Hence, the Potts model is NP
hard for |L| ě 3.

To see this, let G “ pV, E , cq be an undirected graph and K :“ 1 ` ř
ePE cpeq an

upper bound for any multiway cut. Further let s0, . . . , sk´1 P V be the k terminal
nodes. Then solving the multiway cut problem is equivalent to minimizing

Epxq “
k´1ÿ

i“0

´Krxsi “ is `
ÿ

pi,jqPE
ci,jrxi ‰ xjs

Data Term Optimization

Multilabel NP-hardness Convex Prior

IN2245 - Combinatorial Optimization in Computer Vision 12. Multilabel Optimization – 15 / 25

If we have a multi-label problem without pairwise terms, we can transform it into a
graph cut problem. This is not surprising, since we could solve this problem by a
mere tresholding approach.

To do this end, we take |L| ´ 1 different copies of our variables. In other words, we
have for each variable i “ 1, . . . , n exactly k ´ 1 different nodes vi,0, . . . , vi,k´2 and
define the following capacities

c ps, vi,0q “fip0q
c pvi,ℓ´1, vi,ℓq “fipℓq c pvi,ℓ, vi,ℓ´1q “8 for ℓ “ 1, . . . , k ´ 2

c pvi,k´2, tq “fipk ´ 1q

Lower Ideals of Totally Ordered Labels
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This means that if vi,ℓ is connected with the source s, also all nodes vi,ℓ1 for ℓ1 ă ℓ
are connected with the source s as well.

Thus, the variables ξi,ℓ :“ rs is connected with vi,ℓs have one of the following
constellations:

ξi “ pξi,0, . . . , ξi,k´2q “ p0, . . . , 0q
or ξi “ pξi,0, . . . , ξi,k´2q “ p1, . . . , 1, 0, . . . , 0q
or ξi “ pξi,0, . . . , ξi,k´2q “ p1, . . . , 1q

In other words, ξi is a representation of the lower ideal with respect to xi P L
assuming that L is a totally ordered label set.

Note that for the path ps, vi,0, . . . , vi,k´2, tq there is only one transition from the
source set S to the sink set T and the cost that contributes to the cut value is
exactly fipxiq.



Lower Ideal of Partially Ordered Labels
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ĺ 0 1 2

0 X X
1 X X
2 X

0 1

2

It is also possible to use the lower ideals of partially ordered sets:

IL “ t0ĺ, 1ĺ, 2ĺ, 0ĺ Y 1ĺu

Since the set of lower ideals contains not only join-irreducible elements, we cannot
use the same approach. In fact, enforcing join-irreducibility would lead to
super-modular terms.

Therefore, we will focus on totally ordered label sets L.

Convex Prior
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So far, we only transported the data term into the graph cut framework. This was
done by introducing auxiliary nodes. This means that for neigboring pixels i and j
we have the binary variables ξi,0, . . . , ξi,k´2 and ξj,0, . . . , ξj,k´2 with

xi “
k´2ÿ

ℓ“0

ξi,ℓ xj “
k´2ÿ

ℓ“0

ξj,ℓ

If we introduce pairwise terms between ξi,ℓ and ξj,ℓ, we will add a penalty term if
xi and xj do not agree.

In fact, we obtain the L1 model for the multilabeling problem

k´2ÿ

ℓ“0

ξi,ℓξ̄j,ℓ ` ξj,ℓξ̄i,ℓ “
k´2ÿ

ℓ“0

rξi,ℓ ‰ ξj,ℓs “ |xi ´ xj | .

Quadratic Distance Prior
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Also the quadratic model or L2 model can be transformed into a binary graph cut
problem by adding extra edges:

k´2ÿ

ℓ1“0

rξi,ℓ1 ‰ ξj,ℓ1s ` 2
k´2ÿ

ℓ1“0

ℓ1´1ÿ

ℓ2“0

ξi,ℓ1 ξ̄j,ℓ2 ` ξj,ℓ1 ξ̄i,ℓ2 “ pxi ´ xjq2

For |xi ´ xj | ď 1, this is obviously true. Let us assume the relationship is proven
for d “ xi ´ xj ą 0. For xi ` 1, we have to cut the edge between ξi,xi`1 and
ξj,xi`1 and the d different edges between ξi,xi`1 and ξj,xi`1´δ.

Overall, the costs sum up to

pxi ´ xjq2 ` 1 ` 2 ¨ d “ pxi ´ xjq2 ` 1 ` 2pxi ´ xjq “ pxi ` 1 ´ xjq2

Convex Prior
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Lemma 1. Let us assume that we have a convex function f : R Ñ R that satisfies

fp0q “ 0 fp´xq “ fpxq.
Then, using fpxi ´ xjq as penalty for neighboring pixels pi, jq P E can be globally
optimized.

This can be done by using extra edges between ξi,ℓ1 and ξj,ℓ2 and assigning the
following positive capacity cℓ1´ℓ2 to this edge:

cd “

$
’&
’%

fpd ´ 1q ´ 2fpdq ` fpd ` 1q if d ą 0

fp1q if d “ 0

0 if d ă 0

Convex Prior
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Proof. Since f is convex, we have

fpdq “f

ˆ
1

2
pd ´ 1q ` 1

2
pd ` 1q

˙
ď fpd ´ 1q ` fpdq

2
.

Thus, fpd ´ 1q ´ 2fpdq ` fpd ` 1q ě 0.
For the same reason we have fp1q ě 0 and thus, cd is always non-negative.

Without loss of generality, we can assume that xj “ xi ´ d. The lemma is
obviously true for d “ 0 and d “ 1. For general d, the cut is

d´1ÿ

δ“0

cδ ¨ pd ´ δq “
d´2ÿ

δ“0

cδ ¨ ppd ´ 1q ´ δq `
d´1ÿ

δ“0

cd

“fpd ´ 1q ` rfpdq ´ fpd ´ 1qs “ fpdq

Stereo Matching
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Given two images I1 and I2, an observed 2D point x P Ω Ă R2 of I1 corresponds
to a 3D point X that is situated on a line in R3.
This projective line will be observed as a line on the second image I2.

At the projective point x1 P Ω the image information should be similar to x, i.e.,
I1pxq « I2px1q. This defines the data term for a depth map estimation. It is
common to combine this data term with an L1 or L2 regularization.

Stereo Matching
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Left Image Right Image

Multilabel Optimization Ground Truth
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