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Local Optimization 3/25

Multi-Label Problem

The multilabeling problem that we will address in the following is to find « € L™ such that it minimizes the following energy

E(z) = Z filzs) + Z Z fij - d(zi, @)

i=1 i=1jeN (i)
In particular, we assume that for each label ¢ € £ we have a data term f;(¢) for each i € {1,...,n}. These data terms can be easily precomputed and are
often motivated in a probabilistic fashion.

The pairwise term f;;0(x;,2;) depends on a precomputed measure f;; that might depend on the image's gradient or some other information. In addition,
we have a distance function d(¢1, f2) that measures the likelihood that the object corresponding to ¢; is close to the object that corresponds to /.
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Metric Spaces

We already saw that we can find the global optimum if we use the linear or the quadratic model for d(-,-). In fact, any convex model can be optimized
using the Ishikawa construction of last lecture.

We will show that we can find an approximation of the multilabeling problem, if d is a metric,

d: Lx L — R;{ is called a metric if the following properties are satisfied

d(l1,0s) =0< 1 =1 for all £1,05€ L (Positive Definite)
d(fl,fg) = d(fg,fl) for all 51,62 el (Symmetry)
d(fl,fg) < d(fl,fz) + d(fz,fg) for all /1,059,035 € L (Triangle Inequality)

We call (£,d) a metric space if d: £ x L — R is a metric.
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Metric Spaces and Convexity

The Potts model is a metric as well as any LP model for 0 < p < 1.

For each p > 1 there is an L” metric which is the pt" root of the L” model. Since for the totally ordered set £ — Z there is no difference between the LP
metrics for all p > 1, we are usually using the LP” model instead.

For a general label space, the LP model is only convex for p > 1.

For the binary label space, every LP model coincides with the Potts model. In this case, the Potts model is convex and can be globally optimized with
GraphCut.

Any good approximation scheme to minimize the Potts model should therefore find the global optimum of the binary Potts model.
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Limitations of Mean Field Optimization

The mean field optimization looks at the objective function and optimizes it with respect to one variable while keeping the other variables fixed.

This approach is in general problematic, because there may be a situation where we can only improve the energy by changing several variables at the same
time.

Considering f: Z% — R with f(z,y) = 2% + 2(z — y)?, the mean field optimization could not improve upon the solution (z,y) = (1,1).

f(0,1)=2 f(1,1)=1 f(’ )

2,1) =6
£(1,0) =3 f(1,1) =1 £(1,2) =3

Note that this function f is convex and any continuous optimization method could find the global optimum of f: R? — R by a gradient descent approach.
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Binary Updates 8 /25

Long Range Moves

Since graph cuts will always compute the global energy of a submodular energy, one might be interested in formulating a binary submodular sub-problem
that can be solved with graph cut.

Such an approach combines the main idea of mean field optimization, i.e., local improvements with the insight that graph cut optimization can change the
label of multiple variables at the same time.

We will discuss the following three different approaches

B o Expansion allows each variable to either keep its current label or to change it to the label o € £. As a result, the region of o expands.

B o — 3 Swap only changes those pixels that are labeled ¢ € {«, 3}. Each of these variables can choose between « and (.

B Fusion Move starts with two different labelings x,y € L£™. Each variable chooses then for itself either the label from « or y. Both, « expansion and
o« — 3 swap can be seen as special cases of the fusion move.
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a-Expansion
Instead of considering the energy
n
= Z Z Z fz] $Za xj)
i=1 i=1jeN (i)
« expansion considers a different energy with respect to y € B"™.

Given current labeling z € L™ and label a € L, we like to minimize

n

i=1 i=1jeN (i)
f7%0) =fi(z)
45°(0,0) =d(zi, )
457 (1,0) =d(

Zj
a, ;)

E*%(y) :Z f7% i) + Z Z fij - di}" (yir v5)

ze Ll

f70) = fi(e)
dfja(O, 1) =d(z, @)
dfja(l, 1) =d(a, a)
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Local Optimization via a-Expansion

The mean field optimization finds the global optimal with respect to |£| different labelings per iteration. The « expansion optimization on the other hand
seeks to find the global optimum with respect to 2/ different labels.

If d: £L x L — R is a metric, the energy E*% is submodular for every z € L™ and « € L, because

dfja(o, 0) + dsza(l, 1) =d(z;,z) + d(a, @) = d(z;, z;)
gd(zi, OZ) + d(Oé, Zj)
=d;*(0,1) + d;;*(1,0)

Since the Potts model is a metric one can use « expansion to find a local minimum of the original energy. If we use a model that is not a metric, we can use
the roof duality to change some of the involved variables. In most cases this works better than the mean field optimization.

IN2245 - Combinatorial Optimization in Computer Vision 13. Graph Cut Approximation of Multilabel Problems — 11 / 25

a-Expansion Algorithm

Summarizing all observations, the o expansion algorithm works as follows

1. Choose an initial labeling x € L™ and set z := .
2. Forall e L do

(a) Find y € argmin E#%(-).
(b) Set z; := « for all ¢ such that y; = 1.

3. If E(z) < E(x) set x := z and go to Step 2.
4. Return the local optimum x € L™.

« expansion computes at least |£| different graph cuts. This may take a lot of time if the label space is big.

Since each « expansion step considers only a binary problem, the overall memory consumption is independent of |L]|.
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o — [ Swap

Instead of considering the energy

i (x; +Z Z fij - d(z, ) ze Ll

i=1jeN (i)
« — 3 swap considers a different energy with respect to y € B where m < n.
Given z€ L™ and a, B € L let

Xo={1<i1<nlzi=« Xg={1<i<n|lz=p0 X=X+
B B

Without loss of generality, we have

Xo={1,...,mq1} Xg = {m1+1,...,m1 + ma} X={1,...,m}
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o — [ Swap

The energy we like to minimize is

E5P(z) = Z () + Z Z fij - a:l,:zj) xeB™
i=1 =1 jeN (i),
j<m
with
fi0) =fi@)+ Do [fig-dlenz) + fii- d(z,0)]
JEN(3),j>m
O =fB) + Y [y dB,z) + fi-d(z, 8)]
JEN(3),j>m
d(0,0) =d(a, a) 1(0,1) =d(a, )
d(1,0) =d(8, ) d(1,1) =d(B, 5)
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Local Optimization via o —  Swap

If d: £L x L — R is a metric, the energy E#%B is submodular. Thus, we can always use a — 3 swap if we can use a expansion.
Moreover, we can use « — 3 swap if d: £ x L — R is just a premetric, i.e.,

d(fl,fz) =0 for all /1,45 € L
d(,r) =0 forall te L

Hence, we can use o — 3 swap in situation where a expansion can only be used with the help of the roof duality.

a — [ swap like a expansion is more powerful than the naive mean field optimization. In particular, both methods will compute the global optimum if a
binary submodular energy has to be minimized.
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o — -Swap Algorithm
Summarizing, the oo — 3 swap algorithm works as follows

1. Choose an initial labeling x € L™ and set z := .
2. Foralla,Be L do

(a) Find y € argmin E**8(.).
(b) Set z; := « for all ¢ such that y; = 0.
(c) Set z; := 3 for all i such that y; = 1.

3. If E(z) < E(x) set x := z and go to Step 2.
4. Return the local optimum z € L™.

«a — 3 swap computes at least O(|[,|2) different graph cuts. This may take a lot of time, even for moderately large label spaces.

Since there are |£| different o expansion moves, but O(|£|?) different o — 3 swap moves, one usually uses the o — 3 swap moves only in situations where o
expansion cannot be used.
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Fusion Move

Comparing « expansion and o — 3 swap they can be seen as special instances of a more general idea.

Given a labeling z € L™ and «, 8 € L, let us define the followng three labelings 2@ (@) S(B) ¢ £n a5

and

6 _ {B if 2 € {o, B}

z; otherwise z; otherwise

(@) {oz if z; € {a, B}

forall 1 <i<n.

To obtain a better labeling, a expansion combines the information of z and z(®), while & — 3 swap uses z(®), 2(®). To combine two labelings in order to
obtain a better labeling is called fusion move.

IN2245 - Combinatorial Optimization in Computer Vision 13. Graph Cut Approximation of Multilabel Problems — 17 / 25

13



Fusion Move

Instead of considering the energy

:Z Z Z fij - d(zi, ) zel”
i=1

i=1jeN (i)
fusion move considers a different energy with respect to y € B”.

Given two different labeling 2(9), 2(1) € £ we like to minimize

n n
(0) (1) (0) (1)
=D )+ ), D fad T (i)
izl

=1 jeN (i)

L(0) (1) L(0) (1)
77777 0) =£i(+") S —fi(=")
a5 (0,0) =d(=”, =) a5 (0,1) =d(=”, 2
2(0) (1) . (1) _(0) 2(0) z(1) . (1) _(1)
dz‘j (170) _d( Z 7Zj ) d (171) _d(zz 7Zj )
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“Best of Two Worlds”

While fusion move is a generalization of both, o expansion and a — 8 swap, it is difficult to use it in order to design a different local optimization framework.
« expansion can be seen as a version of coordinate descent with respect to the label space. Instead of changing one variable it changes one label.

a — 3 swap changes two labels simultaneously, but this comes at the cost of optimizing only a small subset of all variables.

So far, no other “generic steps’ have been introduced that could be applied to any multilabeling problem.

A common approach to use the fusion move is to pre-compute several labelings with different approaches and then to combine them with a fusion move.
Thus, fusion can be seen as finding the “best of two worlds”.
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Optical Flow 20 / 25

Optical Flow

1

Image Ip: Q — R3 Image I: Q — R3 Flow v: Q — R?

Given two images Iy and I; of a video, we would like to detect the movements between these two images.

In other words, we are interested in a mapping v: Q — R? such that I;(z) ~ Ix(x + v(x)). The vector field v is called the optical flow.

If we quantize R?, we obtain a finite label space and the optical flow v can be understood as a multilabeling of €.
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Image Ip: Q — R3 Image I;: Q — R3 Optical Flow Estimated Flow

If we assume that the color remains constant during the video, we have

d 0 0
0 =£I(t,x +o(t,z)) = &I(t,x +ou(t,x)) + Vo I(t,x + v(t,m))&v(t,x)

Reformulating this in a discrete setting means

[L(z) — Io(x)] + <w% (x), U(x)> —0

These linear constraints lead to an over-determined system of linear equations and Lucas and Kanade proposed to solve it using least squares.
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Optical Flow Estimated Flow

0 0
0=&I+<Vh5?>

the method of Horn und Schunck tries to minimize the following energy

Instead of solving

This energy is usually minimized by a variational framework.
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Optical Flow via Fusion Moves

.=

Ground Truth Lucas-Kanade Horn-Schunck

A

sy S0

1st Fusion Final Fusion

After each fusion a local (variational) optimization is been performed and we can restart the fusion process.
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