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So far, we have considered (undirected) pairwise graphical models G “ pV, Eq,
where the corresponding energy function is defined for a labeling
y P Y “ Y1 ˆ ¨ ¨ ¨ ˆ Y|V| as

Epyq “
ÿ

iPV
Eipyiq `

ÿ

pi,jqPE
Eijpyi, yjq .

The pairwise model suffers from a number of problems stemming from its inability
to express high-order dependencies between pixels.

In many computer vision problems, however, one needs to use higher-order
relations of the pixels.

Epyq “
ÿ

iPV
Eipyiq `

ÿ

pi,jqPE
Eijpyi, yjq `

ÿ

cPC
Ecpycq ,

where C is a set of cliques with at least three variables and yc P Ś
iPc Yi.

Image denoising
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Original (binary) Noise-added Denoised

Pairwise interactions:

Good: Low energy Bad: High energy

Higher-order interactions:

Better (lower energy) Ð Ñ Worse (higher energy)

Multi-camera scene reconstruction
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This problem is the generalization of stereo matching (see Lecture 12).

Left view Middle view Right view Reconstruction

We are given three images Il, Im and Ir. For each pixel p, on all the three images,
we consider a label yp corresponding to a (discretized) depth value. Note that a
pair pp, ypq specifies a 3D point that has the depth value yp and is projected to the
pixel p.

Let I be a set of triples of “nearby” 3D points: these points will come from
different cameras, but they will share the same depth (i.e. the points are of the
form pp, ypq, pq, yqq and pr, yrq, where yp “ yq “ yr and p, q and r are pixels from
different cameras).

Multi-camera scene reconstruction
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If three pixels have similar intensities, then it is more likely that they see the same
scene element than if only two pixels have similar intensities.

The energy function is defined as

Epyq “
ÿ

ppp,ypq,pq,yqq,pr,yrqqPI
El

pqrpyp, yq, yrq `
ÿ

αPtl,m,ru

ÿ

pi,jqPNα

Jyi ‰ yjK ,

where Nl,Nm and Nr are neighborhood systems on pixels corresponding to single
camera images,

El
pqrpyp, yq, yrq “ Dpp, q, rq ¨ Jyp “ yq “ yrK .

The data term enforces photoconsistency, so Dpp, q, rq is a function of the
intensity difference between p, q and r.

Semantic segmentation
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One may want to enforce label consistency by applying higher-order terms.

Original Pairwise CRF Higher-order CRF

Reduction by substitution
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Multi-linear representation
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Reminder: any pseudo–Boolean function f : Bn Ñ R can be uniquely written as a
multi-linear function (see Lecture 2.):

fpx1, . . . , xnq “
ÿ

SĂV
cS

ź

iPS
xi ,

where V “ t1, . . . , nu and cS P R.

Remark that for a pseudo–Boolean function f given in the above multi-linear form
the following holds:

max
x1,...,xnPB fpx1, . . . , xnq ď

ÿ

SĂV
|cS | .

Reduction by substitution
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Rosenberg proposed a method that reduces the minimization of a pseudo–Boolean
function of any degree to an equivalent problem for quadratic pseudo–Boolean
function.

Idea: the product of two variables xy is replaced by a new variable z, which is
forced to have the same value as xy at any minimum of the function.

Assume that x, y, z P B and define

gpx, y, zq “ xy ´ 2xz ´ 2yz ` 3z .

Then the following equivalences hold:

xy “ z ô gpx, y, zq “ 0 and

xy ‰ z ô gpx, y, zq ą 0 .

Note that, of course, the above quadratic expression is not the only one for which
such equivalences would hold.

Reduction by substitution
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x y z xy ´ 2xz ´ 2yz ` 3z xy “ z

0 0 0 0 yes
0 0 1 3 no
0 1 0 0 yes
0 1 1 1 no
1 0 0 0 yes
1 0 1 1 no
1 1 0 1 no
1 1 1 0 yes

xy “ z ô gpx, y, zq “ 0 and

xy ‰ z ô gpx, y, zq ą 0

Consider an example pseudo–Boolean function

fpx, y, wq “ xyw ` xy ` y .

Then replace xy by z and add Mgpx, y, zq:
f̃px, y, w, zq “ zw ` z ` y ` Mgpx, y, zq for 0 ă M P R .

Reduction by substitution
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fpx, y, wq “xyw ` xy ` y

f̃px, y, w, zq “zw ` z ` y ` Mgpx, y, zq .
Let us define M as M :“ 1 ` ř

SPV |cS | “ 1 ` 3 “ 4.

■ If xy “ z, then gpx, y, zq “ 0, thus min f̃px, y, w, zq “ min fpx, y, wq.
■ If xy ‰ z, then f̃px, y, w, zq ě M . Nevertheless, max fpx, y, wq ă M ,

therefore it is impossible for f̃ to take the minimum whenever xy ‰ z.

By repeating the above reduction, any higher-order function can be reduced to a
quadratic one with additional variables: f̃ has one more variable and is of one
less degree than the original function f .

For any minimum-energy value-assignment for the new function, the same
assignment of values to the original variables gives the minimum energy to the
original function:
px˚, y˚, w˚, z˚q P argmin

x,y,w,zPB
f̃px, y, w, zq ñ fpx˚, y˚, w˚q “ min

x,y,wPB fpx, y, wq .

The problem with reduction by substitution
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The first term in

Mgpx, y, zq “ Mxy ´ 2Mxz ´ 2Myz ` 3Mz

is a quadratic term with a (very) large positive coefficient. According to Theorem
4 in Lecture 2, this makes in all cases the result of reduction non-submodular. It
seems such an energy cannot be minimized very well even with QPBO method (see
Lecture 8).

Example:

fpx1, x2, x3, x4q “ ´ 2x1x2 ´ 3 x2x3loomoon
x5

x4

f̃px1, . . . , x5q “ ´ 2x1x2 ´ 3x5x4 ` Mgpx2, x3, x5q
“ ´ 2x1x2 ´ 3x4x5 ` 6px2x3 ´ 2x2x5 ´ 2x3x5 ` 3x5q
“ ´ 2x1x2 ` 6x2x3 ´ 12x2x5 ´ 12x3x5 ´ 3x4x5 ` 18x5 .

Reduction by minimum selection

Reduction by substitution Reduction by minimum selection Transforming multi-label functions

Reduction by minimum selection

Reduction by substitution Reduction by minimum selection Transforming multi-label functions

IN2245 - Combinatorial Optimization in Computer Vision 14. Higher-order Clique Reduction – 15 / 36

Consider a cubic pseudo–Boolean function of x, y, z P B for a P R

fpx, y, zq “ axyz .

Observe that
xyz “ max

wPB wpx ` y ` z ´ 2q .

x y z xyz x ` y ` z ´ 2 maxwPBwpx ` y ` z ´ 2q
0 0 0 0 -2 0
0 0 1 0 -1 0
0 1 0 0 -1 0
0 1 1 0 0 0
1 0 0 0 -1 0
1 0 1 0 0 0
1 1 0 0 0 0
1 1 1 1 1 1

Reduction by minimum selection
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Suppose a ă 0,

axyz “ amax
wPB wpx ` y ` z ´ 2q “ min

wPB awpx ` y ` z ´ 2q .

Suppose a ą 0, and let x̄ “ 1 ´ x, ȳ “ 1 ´ y and z̄ “ 1 ´ z, then

x̄ȳz̄ “max
wPB wpx̄ ` ȳ ` z̄ ´ 2q “ max

wPB wp1 ´ x ` 1 ´ y ` 1 ´ z ´ 2q
“ ´ min

wPB wpx ` y ` z ´ 1q .

Furthermore,

x̄ȳz̄ “ p1 ´ xqp1 ´ yqp1 ´ zq “ ´px ` y ` zq ` pxy ` xz ` yzq ´ xyz ` 1 .

Therefore, we obtain

axyz “ min
wPB a

`
wpx ` y ` z ´ 1q ´ px ` y ` zq ` pxy ` xz ` yzq ` 1

˘
.



The cubic case
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Thus, either case, the cubic term can be replaced by quadratic terms. When axyz
appears in a minimization problem with

■ a ă 0, it can be replaced by

awpx ` y ` z ´ 2q “ apwx ` wy ` wz ´ 2wq .
■ a ą 0, it can be replaced by

a
`
wpx ` y ` z ´ 1q ´ px ` y ` zq ` pxy ` yz ` zxq ` 1

˘

“ apwx ` wy ` wz ` xy ` yz ` zx ´ x ´ y ´ z ´ w ` 1q .
Note that this reduction is valid either the function is submodular or not.

The quartic case
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For quartic term axyzt (x, y, z, t P B), the same trick works if a ă 0, that is

axyzt “ min
wPB awpx ` y ` z ` t ´ 3q .

However, if a ą 0,

x̄ȳz̄t̄ “max
wPB wpx̄ ` ȳ ` z̄ ` t̄ ´ 3q

“max
wPB wp1´x ` 1´y ` 1´z ` 1´t´3q “ max

wPB wp´x ´ y ´ z ´ t ` 1q .

Furthermore,

x̄ȳz̄t̄ “p1 ´ xqp1 ´ yqp1 ´ zqp1 ´ tq
“xyzt ´ pxyz ` xyt ` xzt ` yztq ` pxy ` xz ` xt ` yz ` yt ` ztq

´ px ` y ` z ` tq ` 1 .

The quartic case
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Therefore, we obtain

x̄ȳz̄t̄ “ max
wPB wp´x ´ y ´ z ´ t ` 1q ` pxyz ` xyt ` xzt ` yztq

´ pxy ` xz ` xt ` yz ` yt ` ztq ` px ` y ` z ` tq ´ 1 .

Unlike the cubic case, the maximization problem is not turned into a minimization.
Similarly, this does not work with any term of even degree.

In general, for negative higher-order terms the following holds:

´x1 ¨ ¨ ¨ xd “ min
wPB w

˜
pd ´ 1q ´

dÿ

i“1

xi

¸
.

Symmetric polynomials
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A polynomial ppx1, x2, . . . , xnq is said to be symmetric polynomial, if for any
permutation π of the subscripts 1, 2, . . . , n the following holds

ppxπp1q, xπp2q, . . . , xπpnqq “ ppx1, x2, . . . , xnq .

That is interchanging any of the variables, one obtain the same polynomial.

Elementary symmetric polynomials
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The elementary symmetric polynomials in n variables for k “ 0, 1, . . . , n, are
defined by

σ0px1, x2, . . . , xnq “ 1 ,

σ1px1, x2, . . . , xnq “
ÿ

1ďiďn

xi ,

σ2px1, x2, . . . , xnq “
ÿ

1ďiăjďn

xixj ,

and so on, ending with

σnpx1, x2, . . . , xnq “ x1x2 ¨ ¨ ¨ xn .

It is known that any symmetric polynomial can be expressed as a polynomial in
elementary symmetric polynomials. That is, any symmetric polynomial is given by
an expression involving only additions and multiplication of constants and
elementary symmetric polynomials.

The quartic and quintic cases
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We would like to generalize the formulæ shown before. Observe that the equations
in the cubic case are symmetric in the three variables x, y and z.

Therefore, if there exists a generalization for xyzt, the RHS should also be
symmetric in the four variables:

xyzt “ min
wPB wp1st order sym.q ` p2nd order sym.q .

We will write symmetric polynomials as a polynomial of elementary symmetric
polynomials. There is only one elementary symmetric polynomial of each degree;
the ones we need are:

s0 “ 1 , s1 “ x ` y ` z ` t , s2 “ xy ` yz ` zx ` tx ` ty ` tz .

Since x, y, z, t P B,

s21 “ px`y`z`tq2 “ x`y`z`t`2xy`2yz`2zx`2tx`2ty`2tz “ s1 `2s2 .

The quartic and quintic cases
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Therefore, any symmetric polynomial up to second degree, with binary variables,
can be written as a linear combination of s0, s1 and s2. Thus the formula should
be of the form for a, b, c, d, e P Z

xyzt “ min
wPR wpas1 ` bq ` pcs2 ` ds1 ` es0q .

By applying exhaustive search for a, b, c, d and e one can obtain that

xyzt “ min
wPB wp2s1 ` 3q ` s2 .

One can similarly obtain formula for quintic case. However, the number of
auxiliary variables increases. That is

xyztu “ min
pv,wqPB

pvp´2r1 ` 3q ` wp´r1 ` 3qq ` r2 ,

where r1 and r2 are the 1st and 2nd degree elementary symmetric polynomials in
x, y, z, t, u.

Even degree ˚
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Theorem 1. Let x1, . . . , xd P B, where d is even. For a ą 0

ax1 ¨ ¨ ¨ xd “ min
w1,...,wnd

PB a

˜
ndÿ

i“1

wip´2σ1 ` 4i ´ 1q
¸

` aσ2 ,

where

nd “
Z
d ´ 1

2

^
, σ1 “

dÿ

i“1

xi , and σ2 “
d´1ÿ

i“1

dÿ

j“i`1

xixj .

Proof. Suppose that k of the d variables x1 “ ¨ ¨ ¨ “ xk “ 1 and the rest are 0.
Then, it follows

σ1 “ k , and σ2 “ σ2
1 ´ σ1
2

“ kpk ´ 1q
2

.



Even degree ˚
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Proof cont’d. Let l “ tk2 u, md “ td´2
2 u, N “ minpl,mdq and

A :“ min
w1,...,wnd

PB

mdÿ

i“1

wip´2σ1 ` 4i ´ 1q ` σ2 “
mdÿ

i“1

minp0,´2k ` 4i ´ 1q ` σ2 .

■ If k is even (k “ 2l): ´2k ` 4i ´ 1 ă 0 ô 4i ă 4l ` 1 ô i ď l.
■ If k is odd (k “ 2l ` 1): ´2k ` 4i ´ 1 ă 0 ô 4i ă 4l ` 3 ô i ď l.

Thus,

A “
Nÿ

i“1

p´2k ` 4i ´ 1q ` kpk ´ 1q
2

“ 2N2 ´ Np2k ´ 1q ` kpk ´ 1q
2

.

Note that if k ď d ´ 2, then

l “
Z
k

2

^
ď

Z
d ´ 2

2

^
“ md , hence N “ l .

Even degree ˚
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Proof cont’d. We know that A “ 2N2 ´ Np2k ´ 1q ` kpk ´ 1q{2.
■ k ď d ´ 2.

k “2l : A “2l2 ´ lp2 ¨ 2l ´ 1q ` 2lp2l ´ 1q
2

“ 0 .

k “2l ` 1 : A “2l2 ´ lp2p2l ` 1q ´ 1q ` p2l ` 1qp2l ` 1 ´ 1q
2

“ 0 .

■ k “ d ´ 1. Thus, l “ X
k
2

\ “ X
d´1
2

\ “ X
d´2
2

\ “ md, and N “ l “ md.

A “2m2
d ´ mdp2pd ´ 1q ´ 1q ` pd ´ 1qpd ´ 2q

2
“2m2

d ´ mdp2p2md ` 1q ´ 1q ` p2md ` 1qmd “ 0 .

■ k “ d “ 2l: l “ X
d
2

\ “ X
d´2
2

\ ` 1 “ md ` 1. Thus, N “ md.

A “ 2pl´1q2´pl´1qp4l´1q`lp2l´1q “ 2l2´4l`2´4l2`5l´1`2l2´l “ 1 .

Therefore x1 ¨ ¨ ¨ xd “ A.

Even degree ˚
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Proof cont’d. Since d is even, nd “ td´1
2 u “ td´2

2 u “ md.

ax1 ¨ ¨ ¨ xd “aA

“a min
w1,...,wnd

PB

mdÿ

i“1

wip´2σ1 ` 4i ´ 1q ` aσ2

“ min
w1,...,wnd

PB a
˜

ndÿ

i“1

wip´2σ1 ` 4i ´ 1q
¸

` aσ2 ,

which completes the proof in the even-degree case.

Odd degree ˚
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Theorem 2. Let x1, . . . , xd P B, where d is odd. For a ą 0

ax1 ¨ ¨ ¨ xd “ min
w1,...,wnd

PB a
˜

nd´1ÿ

i“1

wip´2σ1 ` 4i ´ 1q ` wnd
p´σ1 ` 2nd ´ 1q

¸
` aσ2,

where nd, σ1 and σ2 are defined as before.

Proof. We will use the notations defined in the previous proof. When d is odd,
then md “ X

d´2
2

\ “ X
d´1
2

\ ´ 1 “ nd ´ 1. Therefore,

min
w1,...,wnd

PB

˜
nd´1ÿ

i“1

wip´2σ1 ` 4i ´ 1q ` wnd
p´σ1 ` 2nd ´ 1q

¸
` σ2

“ min
w1,...,wnd´1PB

˜
mdÿ

i“1

wip´2σ1 ` 4i ´ 1q
¸

` σ2 ` min
wnd

PBp´σ1 ` 2nd ´ 1q

“A ` minp0,´σ1 ` 2nd ´ 1q .

Odd degree ˚
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Proof cont’d. Again, suppose that k of the d variables x1 “ ¨ ¨ ¨ “ xk “ 1 and the
rest are 0. Since d “ 2

X
d´1
2

\ ` 1 “ 2nd ` 1, it follows that

´σ1 ` 2nd ´ 1 “ ´k ` d ´ 2 ě 0 ô k ď d ´ 2 .

■ k ď d ´ 2. Thus, A “ 0 and ´σ1 ` 2nd ´ 1 ě 0. Therefore,

x1 ¨ ¨ ¨ xd “ 0 , and A ` minp0,´σ1 ` 2nd ´ 1q “ 0 ` 0 “ 0 .

■ k “ d ´ 1. Thus ´σ1 ` 2nd ´ 1 “ ´k ` 2
X
d´1
2

\ ´ 1 “ ´k ` k ´ 1 “ ´1.

Also, md “ nd ´ 1 “ X
d´1
2

\ ´ 1 “ X
k
2

\ ´ 1 “ l ´ 1. Moreover,
N “ minpl,mdq “ l ´ 1 and k “ 2l, it follows that

A “ 2N2 ´Np2k´ 1q ` kpk ´ 1q
2

“ 2pl´ 1q2 ´ pl´ 1qp4l´ 1q ` lp2l´ 1q “ 1 .

Therefore, x1 ¨ ¨ ¨ xd “ 0, and A ` minp0,´σ1 ` 2nd ´ 1q “ 1 ´ 1 “ 0.

Odd degree ˚
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Proof cont’d.

■ k “ d. Thus ´σ1 ` 2nd ´ 1 “ ´k ` 2
X
d´1
2

\ ´ 1 “ ´k ` k ´ 1 ´ 1 “ ´2 , and
N “ md “ l ´ 1, k “ 2l ` 1, thus

A “ 2N2 ´Np2k´1q ` kpk ´ 1q
2

“ 2pl´1q2 ´ pl´1qp4l`1q ` p2l`1ql “ 3; .

Therefore x1 ¨ ¨ ¨ xd “ 1 and A ` minp0,´σ1 ` 2nd ´ 1q “ 3 ´ 2 “ 1.

As we have seen (in the reduction by minimization),

axyz “min
wPB a

`
wpx ` y ` z ´ 1q ´ px ` y ` zq ` pxy ` yz ` zxq ` 1

˘
.

However, by applying the theorem, we obtain

“ min
w1PB aw1

` ´ px ` y ` z ´ 1q ` 1
˘ ` apxy ` yz ` zxq .

General case
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Consider a monomial ax1 ¨ ¨ ¨ xd of degree d. We define the elementary symmetric
polynomials in these variables as

σ1 “
dÿ

i“1

xi , and σ2 “
d´1ÿ

i“1

dÿ

j“i`1

xixj “ σ1pσ1 ´ 1q
2

.

In summary,

■ If a ă 0: ax1 ¨ ¨ ¨ xd “ minwPB awpσ1 ´ pd ´ 1qq.
■ If a ą 0:

ax1 ¨ ¨ ¨ xd “ a min
w1,...,wnd

PB

ndÿ

i“1

wipci,dp´σ1 ` 2iq ´ 1q ` aσ2 ,

where
nd “

Z
d ´ 1

2

^
, ci,d “

#
1, if d is odd and i “ nd,

2, otherwise.

General case
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■ Any pseudo-Boolean function can be uniquely written as a polynomial in binary
variables.

■ Each monomial can be reduced to a quadratic polynomial by making use of the
above technique.

Therefore, the whole function can be reduced to a quadratic polynomial, such that
if any assignment of values to the variables in the reduced polynomial achieves its
minimum, the assignment restricted to the original variables achieves a minimum
of the original function.

Note that the reduction is valid either the function is submodular or not.

The number of additional variables (per clique) in the worst case is exponential in
d. For instance, with a clique of size five, there can be up to one quintic, five
quartic, and ten cubic terms, and 17 new variables could be needed.



Transforming multi-label functions
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Let V and L be the set of pixels and labels, respectively. Consider the following
energy function on a labeling y P Y “ Y1 ˆ ¨ ¨ ¨ ˆ Y|V| “ LV

Epyq “
ÿ

cPC
Ecpycq ,

where C is the set of cliques and Ecpycq denotes the local energy depending on the
labels yc P Lc.

The goal: is to optimize higher-order energies with more than two labels.
One can apply fusion move (see Lecture 13.), where in each iteration the current
labeling and a proposed one is fused by minimizing a pseudo-Boolean energy.

For a proposed labeling p P Y , we consider a binary labeling z P BV such that for
all v P V

y1
v “

#
yv, if zv “ 0

pv, if zv “ 1 .

Transforming multi-label functions
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Therefore,
y1
v “ p1 ´ zvqyv ` zvpv .

We define a pseudo-Boolean function

fpzq “
ÿ

cPC
Ec

`
λcpzc; yc, pcq

˘
,

where for all c P C, `
λcpzc; yc, pcq

˘
v

“ y1
v @v P c .

1. The polynomial fpzq is reduced into a quadratic one.
2. The QPBO method (see Lecture 8.) can be used to minimize fpzq, and it

results an assignment of 0, 1, or ´1 to each pixel v.
3. yv is updated to pv if 1 is assigned to v, otherwise it remains unchanged.
4. Iterate the process until some convergence criterion is met.

Literature ˚
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