

- 23 / 36 IN2245 - Combir

ation in Com

14. Higher

14. Higher-

$$\begin{aligned} & \text{Lyndegree} \\ &$$

Reduction by substitution Reduction by minimum selection Transforming multi-label functions	Transforming multi-label functions Reduction by substitution Reduction by minimum selection Transforming multi-label functions
	Let \mathcal{V} and \mathcal{L} be the set of pixels and labels, respectively. Consider the following energy function on a labeling $\mathbf{y} \in \mathcal{Y} = \mathcal{Y}_1 \times \cdots \times \mathcal{Y}_{ \mathcal{V} } = \mathcal{L}^{\mathcal{V}}$
	$E(\mathbf{y}) = \sum_{c \in \mathcal{C}} E_c(y_c) \; ,$
Transforming multi-label functions	where C is the set of cliques and $E_c(y_c)$ denotes the local energy depending on the labels $y_c \in \mathcal{L}^c$.
	The goal: is to optimize higher-order energies with more than two labels. One can apply fusion move (see Lecture 13.), where in each iteration the current labeling and a proposed one is fused by minimizing a pseudo-Boolean energy. For a proposed labeling $\mathbf{p} \in \mathcal{Y}$, we consider a binary labeling $\mathbf{z} \in \mathbb{B}^{\mathcal{V}}$ such that for
	all $v \in \mathcal{V}$ $y'_v = \begin{cases} y_v, & \text{if } z_v = 0\\ p_v, & \text{if } z_v = 1 \end{cases}.$
	IN2245 - Combinatorial Optimization in Computer Vision 14. Higher-order Clique Reduction - 34 / 36
Transforming multi-label functions Reduction by substitution Reduction by minimum selection Transforming multi-label functions	Literature * Image: Construction of the substitution Reduction by substitution Reduction by minimum selection Transforming multi-label functions
Therefore, $a' = (1 - \pi) m + \pi \pi$	 I. G. Rosenberg. Reduction of Bivalent Maximization to the Quadratic Cons. In Cohiere du Castro d'Etudos de Reduction Operationenalle 17, pp.
$y_v = (1 - z_v)y_v + z_vp_v$. We define a pseudo-Boolean function	71–74, 1975.
$f(\mathbf{z}) = \sum_{c \in \mathcal{C}} E_c (\lambda_c(z_c; y_c, p_c)) ,$	 Endre Boros and Peter L. Hammer. Pseudo-Boolean optimization. In Discrete Applied Mathematics, vol. 123(1–3), pp. 155–225, November 2002. Hiroshi Ishikawa. Higher-order clique reduction in binary graph cut. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.
where for all $c \in C$, $(\lambda_c(z_c; y_c, p_c))_{-} = y'_v \forall v \in c$.	pp. 2993–3000, Miami, FL, USA, June 2009.
 The polynomial f(z) is reduced into a quadratic one. The QPBO method (see Lecture 8.) can be used to minimize f(z), and it results an assignment of 0, 1, or -1 to each pixel v. 	 This in sinkawa. Transformation of Science Dinary links that initiation to the First-Order Case. In <i>IEEE Transactions on Pattern Analysis and Machine</i> <i>Intelligence</i>, vol. 33(6), pp. 1234–1249, June, 2011. Via dirait Kalawarana and June Table. What has a provide the second se
	viadimir Kolmogorov and Ramin Zabin. What energy functions can be minimized via graph cuts? In IEEE Transactions on Pattern Analysis and
3. y_v is updated to p_v if 1 is assigned to v , otherwise it remains unchanged. 4. Iterate the process until some convergence criterion is met.	Viadmir Kolmögöröv and Ramin Zabin. What energy functions can be minimized via graph cuts? In IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26(2), pp. 147–159, February, 2004.