
Combinatorial Optimization in
Computer Vision (IN2245)

Frank R. Schmidt
Csaba Domokos

Winter Semester 2015/2016

15. Higher-order potentials

Compact parameterization Pn Potts model Robust Pn Potts model Harmony potential Hierarchical mo

Compact parameterization

Compact parameterization Pn Potts model Robust Pn Potts model Harmony potential Hierarchical mo

Transforming higher-order energies

Compact parameterization Pn Potts model Robust Pn Potts model Harmony potential Hierarchical mo

IN2245 - Combinatorial Optimization in Computer Vision 15. Higher-order Potentials – 4 / 32

Consider a higher-order energy function Ec for a given clique c, which assigns a
cost θ1 if the variables Yc “ tYv | v P cu take a particular labeling uc P Yc and
θmax ě θ1 otherwise, that is

Ecpycq “
#
θ1, if yc “ uc

θmax, otherwise.

Goal: is to transform Ecpycq to an equivalent quadratic one.
Observe that the minimization of Ecpycq can be transformed to the minimization
of a quadratic function using one additional switching variable z as:

min
yc

Ecpycq “ min
ycPYc,zPB fpzq `

ÿ

iPc
gipz, yiq ,

where the selection function fp0q “ θ1 and fp1q “ θmax and gipz, yiq is called
the consistency function.
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min
yc

Ecpycq “ min
ycPYc,zPB fpzq `

ÿ

iPc
gipz, yiq ,

The consistency function gipz, yiq is defined as:

gipz, yiq “

$
’&
’%

0, if z “ 1

0, if z “ 0 and yi “ ui

8, otherwise.
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Observation: in many computer vision problems higher order energies assign a low
cost to only a few label assignments and the rest of the labelings are given a high
cost, i.e. the energy function is sparse.

Let U “ tu1
c ,u

2
c , . . . ,u

t
cu be a list of possible labelings of the clique c and their

corresponding costs Θ “ tθ1, . . . , θtu. For all other labelings we assign a high
constant cost θmax.

The energy function can be defined as:

Ecpycq “
#
θq, if yc “ uqc P U
θmax, otherwise,

where θmax ě θq for all q “ 1, . . . , t.

The previous idea can be generalized and used to transform any higher order
function to a quadratic one.

General higher-order energies
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The minimization of the above defined higher order function can be transformed to
a quadratic function using a pt ` 1q-state switching variable as:

min
yc

Ecpycq “ min
ycPYc,zPt0,1,...,tu

fpzq `
ÿ

iPc
gipz, xiq ,

where

fpzq “
#
θq, if z “ q P t1, . . . , tu
θmax, if z “ 0,

and

gipz, yiq “

$
’&
’%

0, if z “ q P t1, . . . , tu and yi “ uqi
0, if z “ 0

8, otherwise.

Note that the first state of the switching variable z does not penalize any labeling
of the clique c.

Compact parameterization

Compact parameterization Pn Potts model Robust Pn Potts model Harmony potential Hierarchical mo

IN2245 - Combinatorial Optimization in Computer Vision 15. Higher-order Potentials – 8 / 32

In general, the previous approach can be used to transform any general higher
order potential.

It reduces the complexity of performing inference in higher order cliques. However,
the addition of a switching variable with |L||c| states is required, which is generally
infeasible.

Observation: many low cost label assignments tend to be close to each other in
terms of the difference between labelings of pixels.

The cost of such groups of similar labelings can be encoded without increasing the
number of states of the switching variable z in the transformation to quadratic
functions.

Let us introduce a list of labeling deviation cost functions D “ td1, d2, . . . , dtu
encoding how the cost changes as the labeling moves away from some desired
labeling.
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The energy function Ecpycq can be defined as:

Ecpycq “ min

ˆ
min

qPt1,2,...,tu
θq ` dqpycq, θmax

˙
,

where deviation functions dq : L|c| Ñ R are defined as:

dqpycq “
ÿ

iPc,lPL
wq
ilJyi “ lK ,

where wq
il is the cost added to the deviation function if label l is assigned to

variable Yi (i P c) for a given clique c.

This function can be considered as the generalization of the general higher-order
energy functions, when the weights wq

il are set as:

wq
il “

#
0, if uqi “ l

θmax, otherwise.
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Ecpycq “ min

¨
˝ min

qPt1,2,...,tu
θq `

ÿ

iPc,lPL
wq
ilJyi “ lK, θmax

˛
‚ .

One can apply the same transformation as before using a pt ` 1q-state switching
variable. Therefore,

min
ycPYc

Ecpycq “ min
ycPYc,zPt0,1,...,tu

fpzq `
ÿ

iPc
gipz, yiq ,

where

fpzq “
#
θq, if z “ q P t1, . . . , tu
θmax, if z “ 0 ,

and

gipz, yiq “
#
wq
il, if z “ q P t1, . . . , tu and yi “ l P L

0, if z “ 0 .
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The Pn Potts model is the higher-order generalization of the Potts model, which
is used for modeling many computer vision problems.

The energy function of the Pn Potts model for cliques c Ď V of size n is defined as

Ecpycq “
#
θk, if yi “ lk, @i P c

θmax, otherwise,

where θmax ą θk, for all lk P L.
For a pairwise clique this reduces to the Potts model:

Eijpyi, yjq “
#
θk, if yi “ yj “ lk,@i P c

θmax, otherwise.

If θk “ 0, for all lk, this P
n becomes a metric.

α-expansion for P n Potts model
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The Pn Potts model can be reformulated as

Ecpycq “ max
i,jPc Eijpyi, yjq ,

where Eijpyi, yjq is a pairwise Potts model.

Theorem 1. If Ecpycq is the Pn Potts potential, then the optimal α-expansion
move for any α P L can be computed in polynomial time.

Proof. Any configuration yc can be decomposed as yc “ tyi, yju Y yczti,ju for
i, j P c. Then

Ecpycq “Ecptyi, yju Y yczti,juq
“max

´
Eijpyi, yjq, max

kPczti,ju
Eijpyi, ykq, max

kPczti,ju
Eijpyj , ykq,

max
k,lPczti,ju

Eijpyk, ylq
¯
.

α-expansion for P n Potts model
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Proof cont’d. Let us introduce the following notations

Da “ max
kPczti,ju

Eijpa, ykq , for a P L and D “ max
k,lPczti,ju

Eijpyk, ylq .

Therefore, Ecptyi, yju Y yczti,juq “ maxpEijpa, bq, Da, Db, Dq.
The optimal expansion move can be computed in polynomial time if all projections
of any α-expansion move energy on two variables of the clique are submodular (see
Lecture 13). That is for α, a, b P Yc

Ecptα, αu Y yczti,juq ` Ecpta, bu Y yczti,juq ď
Ecptα, bu Y yczti,juq ` Ecpta, αu Y yczti,juq

should be satisfied. Thus we obtain

maxpEijpα, αq, Dα, Dα, Dq ` maxpEijpa, bq, Da, Db, Dq ď
maxpEijpα, bq, Dα, Db, Dq ` maxpEijpa, αq, Da, Dα, Dq .

α-expansion for P n Potts model
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Proof cont’d.

maxpEijpα, αq, Dα, Dα, Dq ` maxpEijpa, bq, Da, Db, Dq ď
maxpEijpα, bq, Dα, Db, Dq ` maxpEijpa, αq, Da, Dα, Dq .

■ If α P ta, bu, then the above inequality is satisfied by a equality.
■ If α R ta, bu, then the RHS of the above inequality is equal to 2θmax. The

maximum value of the LHS is 2θmax.

This implies that the above inequality is always true.

Robust P n Potts model
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The Pn Potts model enforces label consistency rigidly. This can be resolved by
relaxing the step function by a linear function.

We introduce notation Nipycq for the number of variables in the clique c not
taking the dominant label, that is

Nipycq “ min
k

˜
|c| ´

ÿ

iPc
Jyi “ kK

¸
.

The robust Pn potential has the form

Ecpycq “
#

θmax
Q Nipycq, if Nipycq ď Q

θmax, otherwise,

where Q is the truncation parameter which controls the rigidity of the clique
potential.

Generalized robust P n Potts model
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Multiple robust Pn model can be combined to approximate any non-decreasing
concave consistency potential up to an arbitrary accuracy.

This results in the (generalized) robust Pn Potts model, which can be formulated
as

Ecpycq “ min
´
min
lPL

`
θl `

ÿ

iPc
wl
iJyi ‰ lK

˘
, θmax

¯
,

where θmax ě θl for all l P L.
The potential has a cost of θl if all pixels in the clique (segment) take the label l.
Each pixel not taking the label l is penalized with an additional cost of wl

i, and the
maximum cost of the potential is truncated to θmax.

Generalized robust P n Potts model
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Ecpycq “ min
´
min
lPL

`
θl `

ÿ

iPc
wl
iJyi ‰ lK

˘
, θmax

¯
,

According to compact reparameterization,

Ecpycq “ min
ycPYc,lPL

fplq `
ÿ

iPc
gipl, yiq ,

where fplq “ θl and

gipl, yiq “
#
0, if l “ lF or yi “ l P L
wl
i, otherwise.

Here lF stands for a “free label”. This special label means that any possible label
in L can be assigned to local nodes without any cost.

α-expansion for robust P n model ˚
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Theorem 2. The pairwise consistency function gipl, yiq

gipl, yiq “
#
0, if yi “ lF or l “ yi

wl
i, if yl ‰ lF and l ‰ yi

can be written as:

gipl, ylq “ wl
i

2
Jl ‰ lF K ´ wk

i

2
Jyi “ k ‰ lF K ` Epl, yiq ,

where

Epyi, lq “

$
’’&
’’%

0, if l “ yi
wk

i
2 , if pyi “ lF and l “ k ‰ lF q or pyi “ k ‰ lF and l “ lF q
wk

i `wl
i

2 , if yi “ k ‰ lF and l ‰ lF .

α-expansion for robust P n model ˚
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Proof.

gipl, ylq “ wl
i

2
Jl ‰ lF K ´ wk

i

2
Jyi “ k ‰ lF K ` Epl, yiq ,

where

Epyi, lq “

$
’&
’%

0, if l “ yi

wk
i , if pyi “ lF and l “ k ‰ lF q or pyi “ k ‰ lF and l “ lF q

wk
i `wl

i
2 , if yi “ k ‰ lF and l ‰ lF .

■ l “ lF and yi “ lF : gpl, yiq “ 0.

■ l “ lF and yi ‰ lF : gpl, yiq “ ´wk
i

2 ` wk
i
2 “ 0.

■ l ‰ lF and yi “ lF : gpl, yiq “ ´wl
i

2 ` ´wl
i

2 “ wl
i.

■ l “ yi ‰ lF : gpl, yiq “ wk
i
2 ´ wk

i
2 “ 0.

■ l ‰ lF and yi “ k ‰ lF : gpl, yiq “ wl
i
2 ´ wk

i
2 ` wk

i `wl
i

2 “ wl
i.

α-expansion for robust P n model ˚
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It can be seen that Epyi, lq is a metric, as @a, b, c P L Y tlF u
Epa, bq ě0

Epa, bq “0 ô a “ b

Epa, bq “Epb, aq
Epa, bq ` Epb, cq ěEpa, cq .

Thus, every possible α-expansion move is submodular.

Example
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Input Unaries Super-pixels

Pairwise model Pn Potts model Robust Pn model

Region-based consistency potential
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For a given clique c of variables we define the label inconsistency cost as λ|c|γ
for some parameters λ, γ P R, i.e. the cost of a labeling in which different labels
have been assigned to the pixels constituting the given clique.

This can be expressed by Pn Potts model, which favours all pixels belonging to a
segment taking the same label.

One might also consider a quality sensitive potential which works by modulating
the label inconsistency cost with a function of the quality of a given clique c.

Input Over-segmentation
Segment qualities

(the darker the better)



Region-based consistency potential
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The (robust) quality sensitive potential has the form

Ecpycq “
#

θmax
Q Nipycq, if Nipycq ď Q

θmax, otherwise,

where Q is the truncation parameter which controls the rigidity of the clique
potential. θmax “ pαgpcq ` λq|c|γ , where α P R.

gpcq is a function measuring the quality of a given clique c (e.g., the variance of
feature responses evaluated on all constituent pixels of a segment).

Harmony potential
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Pn Potts Robust Pn Potts Harmony potential

Idea: The global node takes a label from PpLq, which is able to encode any
combination of local node labels. The Harmony potential establishes a penalty
for local node labels not encoded in the label of the global node. It is simply
defined by

gipl, yiq “ θiJyi R lK .
It penalizes when yi is not encoded in l P PpLq, but not when a particular label in
l does not appear in the yi.

Harmony potential
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As we have seen the generalized robust Pn Potts model is defined as

Ecpycq “ min
´
min
lPL

`
θl `

ÿ

iPc
wl
iJyi ‰ lK

˘
, θmax

¯
,

Analyzing the definition of the robust Pn-based potential, we see that lF is
essentially a “wildcard” label that represents any possible label from L.
It can be seen that the harmony potential can be written as

Ecpycq “ min
´
min
lPL

`
θl `

ÿ

iPc
wl
iJyi R lK

˘
, θmax

¯
,

The harmony potential generalizes the robust Pn-based potential by admitting
wildcard labels at the global node, while also allowing concrete and heterogeneous
label combinations to be enforced by the global node.

Hierarchical models
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By making use of higher order energies functions one may define a hierarchical
model.

Hierarchical model
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A hierarchical model is of the form:

Epyq “
ÿ

iPV
Eipyiq `

ÿ

pi,jqPE
Eijpyi, yjq ` min

yp1q
Ep1qpy,yp1qq ,

where Ep1qpy,yp1qq is recursively defined as:

Epnqpypn´1q,ypnqq “
ÿ

cPSpnq
Ecpypn´1q, ypnq

c q `
ÿ

c,dPSpnq
Ecdpypnq

c , y
pnq
d q

` min
ypnq

Epn`1qpypnq,ypn`1qq .

y “ yp0q refers to the state of the base level, and ypnq, for n ě 1 the state of
auxiliary variables. The structure of the graph is chosen beforehand and for all
layers n beyond the maximal layer in the hierarchy m (i.e. n ě m)

Epnqpypn´1q,ypnqq “ 0 .
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Serrat, and Jordi González. Harmony Potentials Fusing Global and Local Scale
for Semantic Image Segmentation. In International Journal of Computer Vision,
vol. 96(1), pp. 83–102, January, 2012.
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