Combinatorial Optimization in Computer Vision (IN2245)

Frank R. Schmidt
Csaba Domokos

Winter Semester 2015/2016

18. FastPD: Approximate Labeling via Primal-Dual Schema

Multi-label problem

IN2245 - Combinatorial Optimization in Computer Vision
18. FastPD algorithm -4 / 56

Thit Equivalent integer linear program
lulti-label problem Primal-dual LP Primal-dual principle Primal-dual schema PD1 PD2 PL
We are generally interested to find a MAP labelling x^{*} :

$$
\mathbf{x}^{*} \in \underset{\mathbf{x} \in \mathcal{L}^{|\mathcal{V}|}}{\operatorname{argmin}} E(\mathbf{x})=\underset{\mathbf{x} \in \mathcal{L}^{|\mathcal{V}|}}{\operatorname{argmin}}\left\{\sum_{i \in \mathcal{V}} \varphi_{i}\left(x_{i}\right)+\sum_{(i, j) \in \mathcal{E}} w_{i j} \cdot d\left(x_{i}, x_{j}\right)\right\} .
$$

This can be equivalently written as an integer linear program (ILP):

$$
\begin{array}{rll}
\min _{x_{i: \alpha}, x_{i j: \alpha \beta}} \sum_{i \in \mathcal{V}} & \sum_{\alpha \in \mathcal{L}} \varphi_{i}(a) x_{i: \alpha}+\sum_{(i, j) \in \mathcal{E}} w_{i j} \sum_{\alpha, \beta \in \mathcal{L}} d(\alpha, \beta) x_{i j: \alpha \beta} \\
\text { subject to } & \sum_{\alpha \in \mathcal{L}} x_{i: \alpha}=1 & \forall i \in \mathcal{V} \\
& \sum_{\alpha \in \mathcal{L}} x_{i j: \alpha \beta}=x_{j: \beta} & \forall \beta \in \mathcal{L},(i, j) \in \mathcal{E} \\
& \sum_{\beta \in \mathcal{L}} x_{i j: \alpha \beta}=x_{i: \alpha} & \forall \alpha \in \mathcal{L},(i, j) \in \mathcal{E} \\
& x_{i: \alpha}, x_{i j: \alpha \beta} \in \mathbb{B} & \forall \alpha, \beta \in \mathcal{L},(i, j) \in \mathcal{E}
\end{array}
$$

$x_{i: \alpha}$ indicates whether vertex i is assigned label α, while $x_{i j: \alpha \beta}$ indicates whether (neighboring) vertices i, j are assigned labels α, β, respectively.

Thit
 FastPD algorithm vs. α-expansion

The FastPD algorithm is a max-flow based combinatorial method which is suitable for approximate optimization of a very wide class of MRFs.
It utilizes tools from the duality theory of linear programming in order to provide a more general view of move making techniques.

This algorithm solves similar problems as the α-expansion (which is included merely as a special case), but it has some advantages:

- It is more general: It can be applied for a much wider class of problems, e.g., MRFs with non-metric potentials.
- It is more efficient: It is guaranteed that the generated solution will always be within a known factor of the global optimum. In practice, these bounds prove to be very tight (i.e. very close to 1).
- It is conceptually more elegant.

Consider a linear program (given in standard form):
$\min _{\mathbf{x} \in \mathbb{R}^{n}}\langle\mathbf{c}, \mathbf{x}\rangle$
subject to $\mathbf{A x}=\mathbf{b}, \mathbf{x} \geqslant \mathbf{0}$,
for a constraint matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, a constraint vector $\mathbf{b} \in \mathbb{R}^{m}$ and a cost vector $\mathbf{c} \in \mathbb{R}^{n}$.

The dual $L P$ is defined as

$$
\begin{aligned}
& \max _{\mathbf{y} \in \mathbb{R}^{m}}\langle\mathbf{b}, \mathbf{y}\rangle \\
& \text { subject to } \mathbf{A}^{T} \mathbf{y} \leqslant \mathbf{c}
\end{aligned}
$$

Due to weak duality $\langle\mathbf{b}, \mathbf{y}\rangle \leqslant\langle\mathbf{c}, \mathbf{x}\rangle$ is held for feasible solutions.
For more details you may refer to Lecture 7 .

$$
\min _{x_{i: \alpha}, x_{i j: \alpha \beta}}\langle\mathrm{c}, \mathrm{x}\rangle \quad \text { subject to } \mathrm{Ax}=\mathrm{b}, \mathrm{x} \geqslant 0 .
$$

We may write $\mathbf{x}=\left[\begin{array}{ll}\mathbf{x}_{1}^{T} & \mathbf{x}_{2}^{T}\end{array}\right]^{T}$, where

$$
\mathbf{x}_{1}=\left[\begin{array}{lllllllll}
x_{1: 1} & \cdots & x_{1: m} & x_{2: 1} & \cdots & x_{2: m} & x_{n: 1} & \cdots & x_{n: m}
\end{array}\right]^{T} \in \mathbb{R}^{m n}
$$

where $n=|\mathcal{V}|$ and $m=|\mathcal{L}|$, and $\mathbf{x}_{2} \in \mathbb{R}^{|\mathcal{E}| m^{2}}$ is the vector consisting of all the variables $x_{i j: \alpha \beta}$ in lexicographic order based on the corresponding 4-tuples
(i,j, α, β).
Similarly, we can write $\mathbf{c}=\left[\begin{array}{ll}\mathbf{c}_{1}^{T} & \mathbf{c}_{2}^{T}\end{array}\right]^{T}$, where

$$
\mathbf{c}_{1}=\left[\begin{array}{lllllll}
\varphi_{1}(1) & \cdots & \varphi_{1}(m) & \cdots & \varphi_{n}(1) & \cdots & \varphi_{n}(m)
\end{array}\right]^{T} \in \mathbb{R}^{m n}
$$

and $\mathbf{c}_{2} \in \mathbb{R}^{|\mathcal{E}| m^{2}}$ is the vector consisting of the values $w_{i j} d(\alpha, \beta)$ in lexicographic order based on the corresponding 4-tuples (i, j, α, β).
Therefore, $\langle\mathbf{c}, \mathbf{x}\rangle=\left\langle\mathbf{c}_{1}, \mathbf{x}_{1}\right\rangle+\left\langle\mathbf{c}_{2}, \mathbf{x}_{2}\right\rangle$.

IN2245 - Combinatorial Optimization in Computer Vision \quad 18. FastPD algorithm - 11/56

$$
\min _{x_{i: \alpha}, x_{i j: \alpha \beta}}\langle\mathbf{c}, \mathbf{x}\rangle \quad \text { subject to } \mathbf{A} \mathbf{x}=\mathrm{b}, \mathbf{x} \geqslant \mathbf{0} .
$$

The (consistency) constraint $\sum_{\alpha \in \mathcal{L}} x_{i j: \alpha \beta}=x_{j: \beta} \Leftrightarrow-x_{j: \beta}+\sum_{\alpha \in \mathcal{L}} x_{i j: \alpha \beta}=0$ can be expressed as

$$
\left[-\mathbf{u}_{(j-1) m+\beta}^{T} \quad \sum_{\alpha \in \mathcal{L}} \mathbf{v}_{m^{2} \pi_{\varepsilon}(i, j)+(\alpha-1) m+\beta}^{T}\right]\left[\begin{array}{l}
\mathbf{x}_{1} \\
\mathbf{x}_{2}
\end{array}\right]=0
$$

where $\mathbf{u}_{k} \in \mathbb{R}^{m n}$ and $\mathbf{v}_{k} \in \mathbb{R}^{|\mathcal{E}| m^{2}}$ are $k^{\text {th }}$ standard unit vectors whose $k^{\text {th }}$ component is equal to one and all the other elements are equal to zero.
One can collect all the consisteny constraints as follows

$$
\left[\begin{array}{l|l}
-\mathbf{U} & \mathbf{V}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x}_{1} \\
\mathbf{x}_{2}
\end{array}\right]=\mathbf{0}_{2|\mathcal{E}| m}=: \mathbf{b}_{2}
$$

where $\mathbf{U} \in \mathbb{R}^{2|\mathcal{E}| m \times m n}$ and $\mathbf{V} \in \mathbb{R}^{2|\mathcal{E}| m \times|\mathcal{E}| m^{2}}$.

IN2245 - Combinatorial Optimization in Computer Vision

$$
\max _{y_{i}, y_{i j: \alpha}, y_{j i: \beta}}\langle\mathbf{b}, \mathbf{y}\rangle \quad \text { subject to } \mathbf{A}^{T} \mathbf{y} \leqslant \mathbf{c} .
$$

Note that the dual variables y_{i} for all $i \in \mathcal{V}$ and $y_{i j: \alpha}, y_{j i: \beta}$ for all $(i, j) \in \mathcal{E}$, $\alpha, \beta \in \mathcal{L}$ correspond to the constraints of the primal LP.
We can write $\mathbf{y}=\left[\begin{array}{lll}\mathbf{y}_{1}^{T} & \mathbf{y}_{2}^{T} & \mathbf{y}_{3}^{T}\end{array}\right]^{T}$, where $\mathbf{y}_{1}=\left[\begin{array}{lll}y_{1} & \cdots & y_{n}\end{array}\right]^{T} \in \mathbb{R}^{n}$, and $\mathbf{y}_{2} \in \mathbb{R}^{|\mathcal{E}| m}$ and $\mathbf{y}_{3} \in \mathbb{R}^{|\mathcal{E}| m}$ are the vectors consisting of the variables $y_{j i: \beta}$ and $y_{i j: \alpha}$ in the same order as it is defined in the case of the primal LP.
The cost function results in

$$
\langle\mathbf{b}, \mathbf{y}\rangle=\left\langle\mathbf{b}_{1}, \mathbf{y}_{1}\right\rangle+\left\langle\mathbf{b}_{2},\left[\begin{array}{cc}
\mathbf{y}_{2}^{T} & \mathbf{y}_{3}^{T}
\end{array}\right]^{T}\right\rangle=\left\langle\mathbf{1}_{n}, \mathbf{y}_{1}\right\rangle=\sum_{i=1}^{n} y_{i}
$$

The constraints $\mathbf{A}^{T} \mathbf{y} \leqslant \mathbf{c}$ are given by

$$
\mathbf{A}^{T} \mathbf{y}=\left[\begin{array}{c|c}
\mathbf{I}_{n \times n} \otimes \mathbf{1}_{m} & -\mathbf{U}^{T} \\
\hline \mathbf{0}_{|\mathcal{E}| m^{2} \times n} & \mathbf{V}^{T}
\end{array}\right] \mathbf{y} \leqslant\left[\begin{array}{l}
\mathbf{c}_{1} \\
\mathbf{c}_{2}
\end{array}\right]=\mathbf{c} .
$$

We will use the notation $x_{i} \in \mathcal{L}$ for the active label given the vertex $i \in \mathcal{V}$.
For each vertex we have a different copy of all labels in \mathcal{L}. It is assumed that all these labels represent balls floating at certain heights relative to a reference plane. For this sake we introduce height variables defined as

$$
h_{i}(\alpha)=\varphi_{i}(\alpha)+\sum_{j \in \mathcal{V},(i, j) \in \mathcal{E}} y_{i j: \alpha}
$$

The constraints $y_{i}-\sum_{j \in \mathcal{V}:(i, j) \in \mathcal{E}} y_{i j: \alpha} \leqslant \varphi_{i}(\alpha)$ can be equivalently written as

$$
y_{i} \leqslant \varphi_{i}(\alpha)+\sum_{j \in \mathcal{V}:(i, j) \in \mathcal{E}} y_{i j: \alpha}=h_{i}(\alpha) \quad \forall i \in \mathcal{V}, \alpha \in \mathcal{L}
$$

Since our objective is to maximize $\sum_{i \in \mathcal{V}} y_{i}$, the following relation holds

$$
y_{i}=\min _{\alpha \in \mathcal{L}} h_{i}(\alpha) \quad \forall i \in \mathcal{V}
$$

IN2245 - Combinatorial Optimization in Computer Vision
18. FastPD algorithm - 17 / 56
lulti-label problem Primal-dual LP \quad Primal-dual principle \quad Primal-dual schema PD1 PD2 PD

The (relaxed) primal LP:

$$
\begin{aligned}
\min _{x_{i: \alpha}, x_{i j: \alpha \beta} \geqslant 0} & \sum_{i \in \mathcal{V}} \sum_{\alpha \in \mathcal{L}} \varphi_{i}(a) x_{i: \alpha}+\sum_{(i, j) \in \mathcal{E}} w_{i j} \sum_{\alpha, \beta \in \mathcal{L}} d(\alpha, \beta) x_{i j: \alpha \beta} \\
\text { subject to } & \sum_{\alpha \in \mathcal{L}} x_{i: \alpha}=1 \quad \forall i \in \mathcal{V} \\
& \sum_{\alpha \in \mathcal{L}} x_{i j: \alpha \beta} \\
& =x_{j: \beta} \quad \forall \beta \in \mathcal{L},(i, j) \in \mathcal{E} \\
& \sum_{\beta \in \mathcal{L}} x_{i j: \alpha \beta}
\end{aligned}=x_{i: \alpha} \quad \forall \alpha \in \mathcal{L},(i, j) \in \mathcal{E} .
$$

The dual LP:

$$
\begin{array}{llll}
\max _{y_{i}, y_{i j}: \alpha, y_{j i: \beta}} & \sum_{i \in \mathcal{V}} y_{i} & \\
\text { subject to } & y_{i}-\sum_{j \in \mathcal{V}:(i, j) \in \mathcal{E}} y_{i j: \alpha} & \leqslant \varphi_{i}(\alpha) & \forall i \in \mathcal{V}, \alpha \in \mathcal{L} \\
& y_{i j: \alpha}+y_{j i: \beta} & \leqslant w_{i j} d(\alpha, \beta) & \forall(i, j) \in \mathcal{E}, \alpha, \beta \in \mathcal{L}
\end{array}
$$

IN2245 - Combinatorial Optimization in Computer Vision
18. FastPD algorithm - 19 / 56

Theorem 1. If x and y are integral-primal and dual feasible solutions satisfying:

$$
\langle\mathbf{c}, \mathbf{x}\rangle \leqslant \epsilon\langle\mathbf{b}, \mathbf{y}\rangle
$$

for $\epsilon \geqslant 1$, then x is an ϵ-approximation to the optimal integral solution \mathbf{x}^{*}, that is
$\left\langle\mathbf{c}, \mathbf{x}^{*}\right\rangle \leqslant\langle\mathbf{c}, \mathbf{x}\rangle \leqslant \epsilon\langle\mathbf{b}, \mathbf{y}\rangle \leqslant \epsilon\left\langle\mathbf{c}, \mathbf{x}^{*}\right\rangle$

We will refer to the variables $y_{i j: \alpha}, y_{j i: \beta}$ as balance variables. Specially, the pair of $y_{i j: \alpha}, y_{j i: \alpha}$ is called conjugate balance variables.
The balls are not static, but may move in pairs through updating pairs of conjugate balance variables as $h_{i}(\alpha)=\varphi_{i}(\alpha)+\sum_{j \in \mathcal{V},(i, j) \in \mathcal{E}} y_{i j: \alpha}$. Therefore, the role of balance variables is to raise or lower labels.

It is due to $y_{i j: \alpha}+y_{j i: \alpha} \leqslant w_{i j} d(\alpha, \alpha)=0 \quad \Rightarrow \quad y_{i j: \alpha} \leqslant-y_{j i: \alpha}$.
We will call the variables $y_{i j: x_{i}}$ as active balance variable and use the following notation for the "load" between neighbors i, j, defined as

$$
\operatorname{load}_{i j}=y_{i j: x_{i}}+y_{j i: x_{j}}
$$

IN2245 - Combinatorial Optimization in Computer Vision
18. FastPD algorithm - 18 / 56

Primal-dual principle

Uht The relaxed complementary slackness
 |ulti-label problem Primal-dual LP Primal-dual principle Primal-dual schema

One way to estimate a pair (\mathbf{x}, \mathbf{y}) satisfying the fundamental inequality
$\langle\mathbf{c}, \mathbf{x}\rangle \leqslant \epsilon\langle\mathbf{b}, \mathbf{y}\rangle$ relies the complementary slackness principle.

Theorem 2. If the pair (\mathbf{x}, \mathbf{y}) of integral-primal and dual feasible solutions satisfies the so-called relaxed primal complementary slackness conditions:

$$
\forall j:\left(x_{j}>0\right) \quad \Rightarrow \quad\left(\sum_{i} a_{i j} y_{i} \geqslant \frac{c_{j}}{\epsilon_{j}}\right),
$$

then (\mathbf{x}, \mathbf{y}) also satisfies $\langle\mathbf{c}, \mathbf{x}\rangle \leqslant \epsilon\langle\mathbf{b}, \mathbf{y}\rangle$ with $\epsilon=\max _{j} \epsilon_{j}$ and therefore \mathbf{x} is an ϵ-approximation to the optimal integral solution \mathbf{x}^{*}.

Proof. Exercise.

Typically, primal-dual ϵ-approximation algorithms construct a sequence $\left(\mathbf{x}^{k}, \mathbf{y}^{k}\right)_{k=1, \ldots, t}$ of primal and dual solutions until the elements $\mathbf{x}^{t}, \mathbf{y}^{t}$ of the last pair are both feasible and satisfy the relaxed primal complementary slackness conditions, hence the condition $\langle\mathbf{c}, \mathbf{x}\rangle \leqslant \epsilon\langle\mathbf{b}, \mathbf{y}\rangle$ will be also fulfilled.

Thit Pseudo-code of the FastPD algorithm

1: $[\mathrm{x}, \mathrm{y}] \leftarrow$ Init_Primals_Duals()
2: labelChange \leftarrow false
3: for all $\alpha \in \mathcal{L}$ do
$\mathbf{y} \leftarrow$ PreEdit_Duals $(\alpha, \mathbf{x}, \mathbf{y})$
$\left[\mathbf{x}^{\prime}, \mathbf{y}^{\prime}\right] \leftarrow$ Update_Duals_Primals $(\alpha, \mathbf{x}, \mathbf{y})$
$\mathbf{y}^{\prime} \leftarrow$ PostEdit_Duals $\left(\alpha, \mathbf{x}^{\prime}, \mathbf{y}^{\prime}\right)$
if $x^{\prime} \neq \mathrm{x}$ then

$$
\text { labelChange } \leftarrow \text { true }
$$

end if
$\mathrm{x} \leftarrow \mathrm{x}^{\prime} ; \mathrm{y} \leftarrow \mathrm{y}^{\prime}$

end for

if labelChange then
goto 2
4: end if
5: $\mathbf{y}^{\text {fit }} \leftarrow$ Dual_Fit (y)

From now on, in case of Algorithm PD1, we only assume that $d(\alpha, \beta)=0 \Leftrightarrow \alpha=\beta$, and $d(\alpha, \beta) \geqslant 0$.

The complementary slackness conditions reduces to

$$
\begin{aligned}
y_{i}- & \sum_{j \in \mathcal{V}:(i, j) \in \mathcal{E}} y_{i j: x_{i}} \geqslant \frac{\varphi_{i}\left(x_{i}\right)}{\epsilon_{1}} \Rightarrow y_{i} \geqslant \frac{\varphi_{i}\left(x_{i}\right)}{\epsilon_{1}}+\sum_{j \in \mathcal{V}:(i, j) \in \mathcal{E}} y_{i j: x_{i}} \\
y_{i j: x_{i}}+y_{j i: x_{j}} & \geqslant \frac{w_{i j} d\left(x_{i}, x_{j}\right)}{\epsilon_{2}}
\end{aligned}
$$

for specific values of $\epsilon_{1}, \epsilon_{2} \geqslant 1$.
If $x_{i}=x_{j}=\alpha$ for neighboring i, j, then

$$
0=w_{i j: \alpha} d(\alpha, \alpha) \geqslant y_{i j: i \alpha}+y_{i j: j \alpha} \geqslant \frac{w_{i j} d(\alpha, \alpha)}{\epsilon_{2}}=0
$$

therefore we get that $y_{i j: \alpha}=-y_{i j: \alpha}$.

To ensure feasibility of \mathbf{y}, PD1 enforces for any $\alpha \in \mathcal{L}$:

$$
\begin{equation*}
y_{i j: \alpha} \leqslant w_{i j} d_{\min } / 2 \quad \text { where } \quad d_{\min }=\min _{\alpha \neq \beta} d(\alpha, \beta) \tag{3}
\end{equation*}
$$

says that there is an upper bound on how much we can raise a label.
Hence, we get the feasibility condition

$$
y_{i j: \alpha}+y_{j i: \beta} \leqslant 2 w_{i j} d_{\min } / 2=w_{i j} d_{\min } \leqslant w_{i j} d(\alpha, \beta)
$$

Moreover the algorithm keeps the active balance variables non-negative, that is $y_{i j: x_{i}} \geqslant 0$ for all $i \in \mathcal{V}$.
The proportionality condition (2) will be also fulfilled as $y_{i j: x_{i}}, y_{i j: x_{j}} \geqslant 0$ and if $y_{i j: x_{i}}=\frac{w_{i j} d_{\min }}{2}$, then

$$
y_{i j: x_{i}} \geqslant \frac{w_{i j} d_{\min }}{2} \frac{d\left(x_{i}, x_{j}\right)}{d_{\max }}=\frac{w_{i j} d\left(x_{i}, x_{j}\right)}{\frac{2 d_{\max }}{d_{\min }}}=\frac{w_{i j} d\left(x_{i}, x_{j}\right)}{\epsilon_{\mathrm{app}}} .
$$

Dual variables update: Given the current active labels, any non-active label is raised, until it either reaches the active label, or attains the maximum raise allowed by the upper bound (3).
Primal variables update: Given the new heights, there might still be vertices whose active labels are not at the lowest height. For each such vertex i, we select a non-active label, which is below x_{i}, but has already reached the maximum raise allowed by the upper bound (3).
The optimal update of the α-heights can be simulated by pushing the maximum amount of flow through a directed graph $G=\left(\mathcal{V} \cup\{s, t\}, \mathcal{E}^{\prime}, \mathcal{C}\right)$.

PD1

Thit Complementary slackness conditions

ulti-label problem Primal-dual LP Primal-dual principle Primal-dual schema
$\square \square \square \square \square \square$
We have known that $y_{i}=\min _{\alpha \in \mathcal{L}} h_{i}(\alpha)$. If $\epsilon_{1}=1$, then we get

$$
y_{i} \geqslant \varphi_{i}\left(x_{i}\right)+\sum_{j \in \mathcal{V}:(i, j) \in \mathcal{E}} y_{i j: x_{i}}=h_{i}\left(x_{i}\right)
$$

Therefore

$$
\begin{equation*}
h_{i}\left(x_{i}\right)=\min _{\alpha \in \mathcal{L}} h_{i}(\alpha) \tag{1}
\end{equation*}
$$

which means that, at each vertex, the active label should have the lowest height.
If $\epsilon_{2}=\epsilon_{\mathrm{app}}:=\frac{2 d_{\max }}{d_{\min }}$, then the complementary condition simply reduces to:

$$
\begin{equation*}
y_{i j: x_{i}}+y_{i j: x_{j}} \geqslant \frac{w_{i j} d\left(x_{i}, x_{j}\right)}{\epsilon_{\mathrm{app}}} \tag{2}
\end{equation*}
$$

It requires that any two active labels should be raised proportionally to their
"load".
IN2245 - Combinatorial Optimization in Computer Vision \quad 18. FastPD algorithm - 28 /56

1: function Init_Primals_Duals

x is simply initialized by a random label assignment
for all $(i, j) \in \mathcal{E}$ with $x_{i} \neq x_{j}$ do
$>$ Init primals
$y_{i j: x_{i}} \leftarrow w_{i j} d\left(x_{i}, x_{j}\right) / 2$
$y_{j i: x_{i}} \leftarrow-w_{i j} d\left(x_{i}, x_{j}\right) / 2$
$y_{j i: x_{j}} \leftarrow w_{i j} d\left(x_{i}, x_{j}\right) / 2$
$y_{i j: x_{j}} \leftarrow-w_{i j} d\left(x_{i}, x_{j}\right) / 2$
end for
for all $i \in \mathcal{V}$ do
$y_{i} \leftarrow \min _{\alpha \in \mathcal{L}} h_{i}(\alpha)$
end for
return $[\mathrm{x}, \mathrm{y}$]
end function

IN2245 - Combinatorial Optimization in Computer Vision

Flow construction: n-edges

For each $(i, j) \in \mathcal{E}$, we insert two directed edges $i j$ and $j i$ into \mathcal{E}^{\prime}.
The flow value $f_{i j}, f_{i j}$ represent respectively the increase, decrease of balance variable $y_{p q: \alpha}$:

$$
y_{i j: \alpha}^{\prime}=y_{i j: \alpha}+f_{i j}-f_{j i} \quad \text { and } \quad y_{j i: \alpha}^{\prime}=-y_{i j: \alpha}^{\prime}
$$

According to (3), the capacities cap ${ }_{i j}$ and $\operatorname{cap}_{j i}$ are set based on

$$
\operatorname{cap}_{i j}+y_{i j: \alpha}=\frac{1}{2} w_{i j} d_{\min }=\operatorname{cap}_{j i}+y_{j i: \alpha}
$$

If α is already the active label of i (or j), then label α at i (or j) need not move.
Therefore, $y_{i j: \alpha}^{\prime}=y_{i j: \alpha}$ and $y_{j i: \alpha}^{\prime}=y_{j i: \alpha}$, that is

$$
x_{i}=\alpha \text { or } x_{j}=\alpha \quad \Rightarrow \quad \operatorname{cap}_{i j}=\operatorname{cap}_{j i}=0
$$

IN2245 - Combinatorial Optimization in Computer Vision

We need to raise α only as high as the current active label of i, but not higher than that, we therefore set:

$$
\operatorname{cap}_{s i}=h_{i}\left(x_{i}\right)-h_{i}(\alpha)
$$

IN2245 - Combinatorial Optimization in Computer Vision

Case 3 ($\alpha=x_{i}$): we want to keep the height of α fixed at the current iteration. Note that the capacities of the n-edges for p are set to 0 , since i has the active label. Therefore, $f_{i}=0$ and $h_{i j: \alpha}^{\prime}=h_{i j: \alpha}$.
By convention cap ${ }_{i j}:=1$.

18. FastPD algorithm - 37 / 56

Based on the reassign rule the following three properties hold:
A $\left.\quad h_{i}^{\prime}\left(x_{i}^{\prime}\right)\right)=\min \left\{h_{i}^{\prime}\left(x_{i}\right), h_{i}^{\prime}(\alpha)\right\}$
B $x_{i}^{\prime}=\alpha \neq x_{j}^{\prime} \Rightarrow y_{i j: \alpha}^{\prime}=\operatorname{cap}_{i j}+y_{i j: \alpha}$
C $\mathrm{APF}^{\mathrm{x}^{\prime}, \mathrm{y}^{\prime}} \leqslant \mathrm{APF}^{\mathrm{x}, \mathrm{y}}$, where $\mathrm{APF}^{\mathrm{x}, \mathrm{y}}$ is defined as

$$
\begin{aligned}
\operatorname{APF}^{\mathbf{x}, \mathbf{y}} & \triangleq \sum_{i \in \mathcal{V}} h_{i}\left(x_{i}\right)=\sum_{i \in \mathcal{V}}\left(\varphi_{i}\left(x_{i}\right)+\sum_{j \in \mathcal{V},(i, j) \in \mathcal{E}} y_{i j: x_{i}}\right) \\
& =\sum_{i \in \mathcal{V}}\left(\varphi_{i}\left(x_{i}\right)+\sum_{(i, j) \in \mathcal{E}}\left(y_{i j: x_{i}}+y_{j i: x_{j}}\right)\right) \\
& \leqslant \sum_{i \in \mathcal{V}} \varphi_{i}\left(x_{i}\right)+\sum_{(i, j) \in \mathcal{E}} w_{i j} d\left(x_{i}, x_{j}\right)=E(\mathbf{x}) .
\end{aligned}
$$

The last condition shows that the algorithm terminates (assuming integer capacities), due to the reassign rule, which ensures that a new active label has always lower height than the previous active label, i.e. $h_{i}^{\prime}\left(x_{i}^{\prime}\right) \leqslant h_{i}\left(x_{i}\right)$.

Wh

Each node $i \in \mathcal{V}^{\prime}-\{s, t\}$ connects to either the source node s or the sink node t (but not to both of them).
There are three possible cases to consider:
Case $1\left(h_{i}(\alpha)<h_{i}\left(x_{i}\right)\right)$: we want to raise label α as much as it reaches label x_{i}.
We connect source node s to node i.
Due to the flow conservation property, $f_{i}=\sum_{j \in \mathcal{V}:(i, j) \in \mathcal{E}}\left(f_{i j}-f_{j i}\right)$.
The flow f_{i} through that edge will then represent the total relative raise of label α :

$$
\begin{aligned}
h_{i}(\alpha)+f_{i} & =\left(\varphi_{i}(\alpha)+\sum_{j \in \mathcal{V}:(i, j) \in \mathcal{E}} y_{i j: \alpha}\right)+\sum_{j \in \mathcal{V}:(i, j) \in \mathcal{E}}\left(f_{i j}-f_{j i}\right) \\
& =\left(\varphi_{i}(\alpha)+\sum_{j \in \mathcal{V}:(i, j) \in \mathcal{E}} y_{i j: \alpha}\right)+\sum_{j \in \mathcal{V}:(i, j) \in \mathcal{E}}\left(y_{i j: \alpha}^{\prime}-y_{j i: \alpha}\right) \\
& =\varphi_{p}(\alpha)+\sum_{j \in \mathcal{V}:(i, j) \in \mathcal{E}} y_{i j: \alpha}^{\prime}=h_{i}^{\prime}(\alpha) .
\end{aligned}
$$

IN2245 - Combinatorial Optimization in Computer Vision

Case $2\left(h_{i}(\alpha) \geqslant h_{i}\left(x_{i}\right)\right.$ and $\left.c \neq x_{i}\right)$: we can then afford a decrease in the height of α at i, as long as α remains above x_{p}.
We connect i to the sink node t through directed edge $i t$.
The flow f_{i} through edge it will equal the total relative decrease in the height of α :

$$
\begin{aligned}
h_{i}^{\prime}(\alpha) & =h_{i}(\alpha)-f_{i} \\
\operatorname{cap}_{i t} & =h_{i}(\alpha)-h_{i}\left(x_{i}\right)
\end{aligned}
$$

IN2245 - Combinatorial Optimization in Computer Vision

Label α will be the new label of i (i.e. $x_{i}^{\prime}=\alpha$) iff there exists unsaturated path between the source node s and node i. In all other cases, i keeps its current label (i.e. $x_{i}^{\prime}=x_{i}$).

$$
f_{i j}<\operatorname{cap}_{i j}
$$

$h_{i}^{\prime}(\alpha)-h_{i}(\alpha)<h_{i}\left(x_{i}\right)-h_{i}(\alpha)$

$$
h_{i}^{\prime}(\alpha)<h_{i}\left(x_{i}\right)=h_{i}^{\prime}\left(x_{i}\right)
$$

IN2245 - Combinatorial Optimization in Computer Vision
18. FastPD algorithm - 38 / 56

function Update_Duals_Primals $(\alpha, \mathbf{x}, \mathbf{y})$
$\mathbf{x}^{\prime} \leftarrow \mathbf{x}, \mathbf{y}^{\prime} \leftarrow \mathbf{y}$
Apply max-flow to G^{\prime} and compute flows $f_{i}, f_{i j}$
for all $(i, j) \in \mathcal{E}$ do
$y_{i j: \alpha}^{\prime} \leftarrow y_{i j: \alpha}+f_{i j}-f_{j i}$

end for

for all $i \in \mathcal{V}$ do
$x_{i} \leftarrow \alpha \Leftrightarrow \exists$ unsaturated path $s \rightsquigarrow \rightarrow i$ in G^{\prime}
end for
return $\left[x^{\prime}, y^{\prime}\right]$
end function

The goal is to restore all active balance variables $y_{i j: x_{i}}$ to be non-negative.

1. $x_{i}^{\prime}=\alpha \neq x_{j}^{\prime}$: we have cap ${ }_{i j}, y_{i j: \alpha} \geqslant 0$, therefore $y_{i j: \alpha}^{\prime}=\operatorname{cap}_{i j}+y_{i j: \alpha} \geqslant 0$.
2. $\quad x_{i}^{\prime}=x_{j}^{\prime}=\alpha$: we have $y_{i j: \alpha}^{\prime}=-y_{j i: \alpha}^{\prime}$, therefore load ${ }_{i j}^{\prime}=y_{i j: \alpha}^{\prime}+y_{j i: \alpha}^{\prime}=0$. By setting $y_{i j}^{\prime}(\alpha)=y_{j i: \alpha}^{\prime}=0$ we get load $_{i j}^{\prime}=0$ as well.
Since none of the "load" were altered, the APF ${ }^{\mathrm{x}, \mathbf{y}}$ remains unchanged.
1: function PostEdit_Duals $\left(\alpha, \mathbf{x}^{\prime}, \mathbf{y}^{\prime}\right)$
for all $(i, j) \in \mathcal{E}$ with $\left(x_{i}^{\prime}=x_{j}^{\prime}=\alpha\right)$ and ($y_{i j: \alpha}^{\prime}<0$ or $\left.y_{j i: \alpha}^{\prime}<0\right)$ do $y_{i j: \alpha}^{\prime} \leftarrow 0, y_{j i: \alpha}^{\prime} \leftarrow 0$

end for

for all $i \in \mathcal{V}$ do $y_{i}^{\prime} \leftarrow \min _{\alpha \in \mathcal{L}} h_{i}^{\prime}(\alpha)$
end for
return y^{\prime}
end function

PD2

What Complementary slackness conditions

 |ulti-label problem Primal-dual LP Primal-dual principle Primal-dual schema

Similarly to Algorithm PD1, the equalities will hold for $i \in \mathcal{V}$

$$
y_{i}=\min _{\alpha \in \mathcal{L}} h_{i}(\alpha)=h_{i}\left(x_{i}\right)=\varphi_{i}\left(x_{i}\right)+\sum_{i \in \mathcal{V},(i, j) \in \mathcal{E}} y_{i j: x_{i}}
$$

$\mathrm{PD} 2_{\mu}$ generates a series of intermediate pairs satisfying complementary slackness conditions for $\epsilon_{1} \geqslant 1$ and $\epsilon_{2} \geqslant \frac{1}{\mu}=\frac{1}{1 / \epsilon_{\text {app }}}=\epsilon_{\text {app }}$:

$$
\begin{array}{cc}
\frac{\varphi_{i}\left(x_{i}\right)}{\epsilon_{1}}+\sum_{i \in \mathcal{V},(i, j) \in \mathcal{E}} y_{i j: x_{i}} \leqslant \varphi_{i}\left(x_{i}\right)+\sum_{i \in \mathcal{V},(i, j) \in \mathcal{E}} y_{i j: x_{i}}=h_{i}\left(x_{i}\right)=y_{i} & \forall i \in \mathcal{V} \\
\frac{w_{i j} d\left(x_{i}, x_{j}\right)}{\epsilon_{2}} \leqslant \mu w_{i j} d\left(x_{i}, x_{j}\right)=\operatorname{load}_{i j}^{\mathbf{x}, \mathbf{y}} & \forall(i, j) \in \mathcal{E}
\end{array}
$$

Like PD1, PD2 μ_{μ} also maintains non-negativity of active balance variables.

The primal-dual pair ($\mathbf{x}, \mathbf{y}^{\text {fit }}$) satisfies complementary conditions with
$\epsilon_{1}=\mu \epsilon_{\text {app }}=1$ and $\epsilon_{2}=\epsilon_{\text {app }}$ thus leading to an $\epsilon_{\text {app }}$-approximate solution as well Indeed, it holds that:

$$
\begin{aligned}
y_{i}^{\mathrm{fit}} & \triangleq \frac{y_{i}}{\mu \epsilon_{\mathrm{app}}}=\frac{\min _{\alpha} h_{i}(\alpha)}{\mu \epsilon_{\mathrm{app}}}=\frac{h_{i}\left(x_{i}\right)}{\mu \epsilon_{\mathrm{app}}}=\frac{\varphi_{i}\left(x_{i}\right)+\sum_{j \in \mathcal{V},(i, j) \in \mathcal{E}} y_{i j: x_{i}}}{\mu \epsilon_{\mathrm{app}}} \\
& =\frac{\varphi_{i}\left(x_{i}\right)}{\mu \epsilon_{\mathrm{app}}}+y_{i j: x_{i}}^{\mathrm{fit}}
\end{aligned}
$$

Furthermore

$$
y_{i j: x_{i}}^{\mathrm{fit}}+y_{j i: x_{j}}^{\mathrm{fit}}=\frac{y_{i j: x_{i}}+y_{j i: x_{j}}}{\mu \epsilon_{\mathrm{app}}}=\frac{\operatorname{load}_{i j}}{\mu \epsilon_{\mathrm{app}}}=\frac{\mu w_{i j} d\left(x_{i}, x_{j}\right)}{\mu \epsilon_{\mathrm{app}}}=\frac{w_{i j} d\left(x_{i}, x_{j}\right)}{\epsilon_{\mathrm{app}}}
$$

$\epsilon_{\text {app }}$-approximate solution
ulti-label problem Primal-dual LP Primal-dual principle Primal-dual schema
In summary, one can see that PD1 always leads to an ϵ-approximate solution:
Theorem 3. The final primal-dual solutions generated by PD1 satisfy

1. $h_{i}\left(x_{i}\right)=\min _{\alpha \in \mathcal{L}} h_{i}(\alpha)$ for all $i \in \mathcal{V}$,
2. $x_{i} \neq x_{j} \Rightarrow$ load $_{i j} \geqslant \frac{w_{i j} d\left(x_{p}, x_{q}\right)}{\epsilon_{\text {app }}}$ for all $(i, j \in \mathcal{E})$,
3. $y_{i j: \alpha} \leqslant \frac{w_{i j} d_{\text {min }}}{2}$ for all $(i, j \in \mathcal{E})$ and $\alpha \in \mathcal{L}$,
and thus they satisfy the relaxed complementary slackness conditions with $\epsilon_{1}=1$,
$\epsilon_{2}=\epsilon_{\text {app }}=\frac{2 d_{\text {max }}}{d_{\text {min }}}$.

IN2245 - Combinatorial Optimization in Computer Vision

We now assume that d is a metric.
In fact, PD2 represents a family of algorithms parameterized by $\mu \in\left[\frac{1}{\epsilon_{\text {app }}}, 1\right]$.
Algorithm PD 2μ will achieve slackness conditions with

$$
\epsilon_{1} \triangleq \mu \epsilon_{\mathrm{app}} \geqslant \frac{1}{\epsilon_{\mathrm{app}}} \epsilon_{\mathrm{app}} \geqslant 1 \quad \text { and } \quad \epsilon_{2}=\epsilon_{\mathrm{app}}
$$

Algorithm PD1 always generates a feasible dual solution at any of its inner iterations, whereas $\mathrm{PD} 2 \mu$ may allow any such dual solution to become infeasible.
Dual-fitting: $\mathrm{PD} 2_{\mu}$ ensures that the (probably infeasible) final dual solution is "not too far away from feasibility", which practically means that if that solution is divided by a suitable factor, it will become feasible again.

IN2245 - Combinatorial Optimization in Computer Vision

The dual solution of the last intermediate pair may be infeasible, since, instead of the feasibility condition $y_{i j: \alpha}+y_{j i: \beta} \leqslant w_{i j} d(\alpha, \beta), \operatorname{PD}{ }_{\mu}$ maintains the conditions:

$$
y_{i j: \alpha}+y_{j i: \beta} \leqslant 2 \mu w_{i j} d_{\max } \quad \forall(i, j) \in \mathcal{E}, \forall \alpha, \beta \in \mathcal{L} .
$$

These conditions also ensure that the last dual solution \mathbf{y}, is not "too far away from feasibility". By replacing \mathbf{y} with $\mathbf{y}^{\text {fit }}=\frac{\mathbf{y}}{\mu \epsilon_{\text {app }}}$ we get that
$y_{i j: \alpha}^{\mathrm{fit}}+y_{j i: \beta}^{\mathrm{fit}}=\frac{y_{i j: \alpha}+y_{j i: \beta}}{\mu \epsilon_{\text {app }}} \leqslant \frac{2 \mu w_{i j} d_{\max }}{\mu \epsilon_{\mathrm{app}}}=\frac{2 \mu w_{i j} d_{\max }}{\mu 2 d_{\max } / d_{\min }}=w_{i j} d_{\min } \leqslant w_{i j} d(\alpha, \beta)$.
This means that $\mathbf{y}^{\text {fit }}$ is feasible.
1: function DUAL_Fit(y)
return $\mathrm{y}^{\text {fit }} \leftarrow \frac{\mathrm{y}}{\mu \epsilon_{\text {app }}}$
end function

IN2245 - Combinatorial Optimization in Computer Vision

The main/only difference in the subroutine Update_Duals_Primals $(\alpha, \mathbf{x}, \mathbf{y})$ is the definition of the capacities corresponding to the n-edges. More precisely, assuming an α-iteration, where $x_{i}=\beta \neq \alpha$ and $x_{j}=\gamma \neq \alpha$ for a given $(i, j) \in \mathcal{E}$:

$$
\begin{align*}
& \operatorname{cap}_{i j}=\mu w_{i j}(d(\beta, \alpha)+d(\alpha, \gamma)-d(\beta, \gamma)) \tag{4}\\
& \operatorname{cap}_{j i}=0
\end{align*}
$$

All the capacities in the flow must be non-negative. This motivates that d must be a metric.
By applying load ${ }_{i j}^{\mathbf{x}, \mathbf{y}}=y_{i j: \beta}+y_{j i: \gamma}=\mu w_{i j} d(\beta, \gamma)$ one can get

$$
y_{i j: \alpha}^{\prime}=y_{i j: \alpha}+\operatorname{cap}_{i j}=y_{i j: \alpha}+\mu w_{i j}(d(\beta, \alpha)+d(\alpha, \gamma)-d(\beta, \gamma))
$$

$$
=y_{i j: \alpha}+y_{i j: \beta}+y_{j i: \alpha}+\mu w_{i j} d(\alpha, \gamma)-y_{i j: \beta}-y_{j i: \gamma}=\mu w_{i j} d(\alpha, \gamma)-y_{j i: \gamma},
$$

which ensures that
$\operatorname{load}_{i j}^{\mathbf{x}, \mathbf{y}}=y_{i j: \alpha}+y_{j i: \gamma}=\left(\mu w_{i j} d(\alpha, \gamma)-y_{j i: \gamma}\right)+y_{j i: \gamma}=\mu w_{i j} d(\alpha, \gamma)$.

The role of this routine is to edit current solution \mathbf{y}, before the subroutine Update_Duals_Primals (α, \mathbf{x}), so that

$$
\operatorname{load}_{i j}^{\mathbf{x}, \mathbf{y}}=y_{i j: \alpha}+y_{j i: \gamma}=\mu w_{i j} d(\alpha, \gamma)
$$

1: function PreEdit_Duals $(\alpha, \mathbf{x}, \mathbf{y})$
for all $(i, j) \in \mathcal{E}$ with $x_{i} \neq \alpha, x_{j} \neq \alpha$ do $y_{i j: \alpha} \leftarrow \mu w_{i j} d(\alpha, \gamma)-y_{j i: \gamma}$ $y_{j i: \alpha} \leftarrow y_{j i: \gamma}-\mu w_{i j} d(\alpha, \gamma)$
end for
return y
end function

Therefore neither the "load" nor the APF function is altered.

IN2245 - Combinatorial Optimization in Computer Vision
18. FastPD algorithm - 49 / 56

PD3

We choose to set $\operatorname{cap}_{i j}=+\infty$ and no further differences between PD_{b} and
PD2 ${ }_{\mu=1}$ exist.
This has the following important effect: the solution \mathbf{x}^{\prime} produced at the current iteration, can never assign the pair of labels γ, β to the objects i, j respectively.
In the metric case we can choose the best assignment among all α-expansion moves, whereas in the non-metric case we are only able to choose the best one among a certain subset of these c-expansion moves.

Original (left)

PD1

Distance $d(\alpha, \beta)$	$\epsilon_{\text {app }}^{\mathrm{PD} 1}$	$\epsilon_{\text {app }}^{\mathrm{PD} 2_{\mu=1}}$	$\epsilon_{\text {app }}^{\mathrm{PDP}_{a}}$	$\epsilon_{\text {app }}^{\mathrm{PD}_{b}}$	$\epsilon_{\text {app }}^{\mathrm{PD}_{c}}$	$\epsilon_{\text {app }}$
$\llbracket(\alpha \neq \beta \rrbracket$	1.0104	1.0058	1.0058	1.0058	1.0058	2
$\min (5,\|\alpha-\beta\|)$	1.0226	1.0104	1.0104	1.0104	1.0104	10
$\min (5,\|\alpha-\beta\|)$	1.0280	-	1.0143	1.0158	1.0183	10

Whit Equivalence of $\mathrm{PD}_{\mu}=1$ and α-expansion
|ulti-label problem Primal-dual LP Primal-dual principle Primal-dual schema own that $\operatorname{PD} 2_{\mu=1}$ indeed generates an $\epsilon_{\text {app }}$ solution.
One can shown that $\operatorname{PD} 2_{\mu=1}$ indeed generates an $\epsilon_{\text {app }}$ solution.
If $\mu<1$, then neither the primal (nor the dual) objective function necessarily decreases (increases) per iteration. Instead, APF constantly decreases.
If $\mu=1$, then $\operatorname{load}_{i j}=w_{i j} d\left(x_{i}, x_{j}\right)$. It can be shown that $\mathrm{APF}^{\mathbf{x}, \mathbf{y}}=E(\mathbf{x})$, whereas in any other case $\mathrm{APF}^{\mathbf{x}, \mathbf{y}} \leqslant E(\mathbf{x})$ (due to property C).
Recall that APF is the sum of active labels heights and $\operatorname{PD} 2_{\mu=1}$ always tries to choose the lowest label among x_{p} and α (see property A). During an α-iteration, $\operatorname{PD} 2_{\mu=1}$ chooses an x^{\prime} that minimizes APF with respect to any other α-expansion $\overline{\mathbf{x}}$ of current solution \mathbf{x}.

Theorem 4. Let $\left(\mathbf{x}^{\prime}, \mathbf{y}^{\prime}\right)$ denote the next prima-dual pair due to an α-iteration and $\overline{\mathbf{x}}$ denote α-expansion of the current primal. Then

$$
E\left(\mathbf{x}^{\prime}\right)=A P F^{\mathbf{x}^{\prime}, \mathbf{y}^{\prime}} \leqslant A P F^{\overline{\mathbf{x}}, \mathbf{y}^{\prime}} \leqslant E(\overline{\mathbf{x}})
$$

$E\left(\mathbf{x}^{\prime}\right) \leqslant E(\overline{\mathbf{x}})$ proves that the α-expansion algorithm is equivalent to $\operatorname{PD} 2_{\mu=1}$.
IN2245 - Combinatorial Optimization in Computer Vision
18. FastPD algorithm $-50 / 56$

By modifying the Algorithm $\operatorname{PD} 2_{\mu=1}$, we will get Algorithm PD3, which can be applied even if d is non-metric function.
Recall that $\mathrm{PD}_{\mu=1}$ maintains the optimality criterion: load $_{i j} \leqslant w_{i j} d\left(x_{i}, x_{j}\right)$.
Since d is not metric, we have conflicting label-triplet (α, β, γ) :

$$
d(\beta, \gamma)>d(\beta, \alpha)+d(\alpha, \gamma)
$$

Algorithm PD_{a} : During the primal-dual variable update, in an α-iteration, when $x_{i} \neq \alpha$ and $x_{j} \neq \alpha$, i.e. in (4), we set $\operatorname{cap}_{i j}=0$.
It can be shown that for a conflicting triplet

$$
\operatorname{load}_{i j}=w_{i j}(d(\beta, \gamma)-d(\beta, \alpha)) \geqslant w_{i j} d(\alpha, \gamma)
$$

Intuitively, PD_{a} overestimates the distance between labels α, γ in order to restore the triangle inequality for the current conflicting label-triplet (α, β, γ).
IN2245 - Combinatorial Optimization in Computer Vision
18. FastPD algorithm - 52 / 56

PD_{c} first adjusts the dual solution \mathbf{y} so that, for any $(i, j) \in \mathcal{E}$:

$$
\operatorname{load}_{i j} \leqslant w_{i j} d(\alpha, \gamma)+d(\gamma, \beta)
$$

After this initial adjustment, PD_{c} proceeds exactly as $\mathrm{PD} 2_{\mu=1}$, except for the fact that the term $d(\alpha, \beta)(4)$ is replaced

$$
\bar{d}(\beta, \gamma) \triangleq \frac{\operatorname{load}_{i j}}{w_{i} j} \leqslant d(\beta, \alpha)+d(\alpha, \gamma)
$$

Intuitively, PD_{c} works in a complementary way to $\mathrm{PD} 3_{a}$ algorithm, i.e. in order to restore the triangle inequality for the conflicting label-triplet (α, β, γ), instead of overestimating the distance between either labels α, γ or α, β, it chooses to underestimate the distance between labels (β, γ).

IN2245 - Combinatorial Optimization in Computer Vision

- Nikos Komodakis and Georgios Tziritas. Approximate Labeling via Graph-Cuts Based on Linear Programming. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29(8), pp. 1436-1453, August, 2007.
- Nikos Komodakis and Georgios Tziritas. Approximate Labeling via the Primal-Dual Schema. Technical Report, University of Crete, February 2005.

