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Multi-label problem revisited
Consider an undirected graphical model given by G = (V, ) which takes values from an arbitrary (finite) label set L.
More specially, assume that the corresponding energy function is given by
B(x) =) ei(xi) + Y, wi-d(xi,x;)
i€V (4,9)e€
where ¢; stands for the data term, w;; € R are weighting factors, and d is a metric or a semi-metric (i.e. the triangle inequality is not necessary satisfied).
We have already seen some applications in Computer Vision corresponding to this energy function (e.g., stereo matching, image denoising, optical flow).

As we have discussed (in Lecture 13) one possible way to approximately solve this problem is to apply move making algorithms (e.g., a-expansion).
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Equivalent integer linear program

We are generally interested to find a MAP labelling x*:

x* € argmin F(x) = argmin { Z wi(x;) + Z w;j - d(:):i,xj)} )
xeLlVl xelVl ey (i.§)e€

This can be equivalently written as an integer linear program (ILP):
_min Z Z ©i(a)Tiq + Z Wi Z d(a, B)Zij.ap
Iy ljiaﬁ ZGV aeﬁ (747])65 05,6 EC
subject to Y ./ Ti:a =1 VieV
Zaeﬁ Tij:a,p = Ty VB e L, (Z’]) €&
Zggg Tij:a,p = Tiiaw Va e Ev (717]) €&
Ti:ay Tij:a, B € B Va,ﬁ € 'Cv (Zvj) e

Tj.o indicates whether vertex i is assigned label «, while x;;.5 indicates whether (neighboring) vertices i, j are assigned labels «, 3, respectively.
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Interpretation of the constraints
Let us assume that £ = {1, 2,3} and consider the following example:
() —u—(v)
/ N4
Ti:1 Tij:11 Zj:1
T2 < ::H Tij:23 g

72
Zi:3 7:3

t ¢

Uniqueness: The constraint ), . Zi.o = 1 simply express the fact that each vertex must receive exactly one label.

] E>

Consistency: The constraints }} _, %ij.a3 = ;.3 and Zﬁeﬁ Tij.aB8 = Ti:o Maintain consistency between variables, i.e. if ;. = 1 and z;.3 = 1 holds true,
then these constraints force ;.3 = 1 to hold true as well.
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FastPD algorithm vs. a-expansion

The FastPD algorithm is a max-flow based combinatorial method which is suitable for approximate optimization of a very wide class of MRFs.
It utilizes tools from the duality theory of linear programming in order to provide a more general view of move making techniques.
This algorithm solves similar problems as the a-expansion (which is included merely as a special case), but it has some advantages:

B It is more general: It can be applied for a much wider class of problems, e.g., MRFs with non-metric potentials.

B It is more efficient: It is guaranteed that the generated solution will always be within a known factor of the global optimum. In practice, these bounds
prove to be very tight (i.e. very close to 1).

B It is conceptually more elegant.
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Primal-dual LP revisited

Consider a linear program (given in standard form):

min{c, x)

subject to Ax =b,x >0,
for a constraint matrix A € R™*", a constraint vector b € R™ and a cost vector ¢ € R".

The dual LP is defined as

max<{b,y)
yeR™

subject to ATy < c.

Due to weak duality (b,y) < {(c,x) is held for feasible solutions.

For more details you may refer to Lecture 7.

IN2245 - Combinatorial Optimization in Computer Vision 18. FastPD algorithm — 9 / 56



LP relaxation

The ILP defined before is in general NP-hard. Therefore we deal with the LP relaxation of our ILP. The relaxed LP can be written in standard form as
follows:

min {c,x)
Ti:asLij:af

subject to Ax =b,x > 0.

Reminder: The lexicographical order relation < on N* is defined as

(ug,...,uk) < (v1,...,08) < 3 : Vi<l (u; =v;) and (u; < vy) .
CL11B e CLUB
Reminder: Assume A € RF*! and B € R™*", then the Kronecker product A ® B is the km x In block matrix: A®B = : :
ale e ale
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LP relaxation: cost function

min {c,x) subject to Ax =b,x>0.

Ti:asTij:af
. T T
We may write x = [xl x2] , Where T
X1 = I:!Tl:l o Tm X210 00 T2m Tl !Tn:m] e R™ |
where n = [V| and m = |L£|, and x5 € RI€I™ is the vector consisting of all the variables ;.5 in lexicographic order based on the corresponding 4-tuples
(/]:7].7 a? B) T
Similarly, we can write ¢ = [¢] ¢l where

cr=[pi(1) - @im) o ea(l) e ga(m)] e R™,

and ¢y € RIEIM? is the vector consisting of the values w;;d(c, 3) in lexicographic order based on the corresponding 4-tuples (3, j, o, ).
Therefore, {(c,x) = (c1,x1) + {C2,X2).
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LP relaxation: constraints
min {c,x) subject to Ax =b,x>0.
Ti:asTij:af
We can write the (uniqueness) constraints >, . xj.q = 1 for all peV as
[Inxn X 1%;] x; =1, =:by,

where 1,, € R" is the vector of all-ones.

We introduce the notation ¢ (7, j) for the index of an element (i,5) € £ according to the lexicographic order < on &, that is

me(i,g) 2 [{(k,0) € € | (k1) < (i, )} -
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LP relaxation: constraints

min {c,x) subject to Ax =b,x>0.

Ti:asTij:af

The (consistency) constraint Y}, Zij.af = Tj:3 < —Zj:8 + Diner Tij:a = 0 can be expressed as

T T -
[_u(jfl)m+5 Lioer Vm?ﬂf(ivj”(“‘”m*ﬁ] [XJ -0

2 . .
where u;, € R™ and v;, € RI€I™” are " standard unit vectors whose k" component is equal to one and all the other elements are equal to zero.

One can collect all the consisteny constraints as follows
X1
-U|Vv =0 =b
[ ‘ ] |:X2] 2|E|m 2

where U e R2[Elmxmn 54 v ¢ R2IEImx[Elm?
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LP relaxation: constraints

min {(c,x) subject to Ax =b,x > 0.

Ti:asLij:afB

We can write all the constraints in a matrix-vector notation as follows.
Ax — Lixn @10 | Onsjepme | [xa] _ [ 1o | _ [b1] _
-Uu | Vv X2 021¢|m by

2 . . . .
Hence, A € RF2[E[mxmn+|Elm* jg 5 sparse matrix with elements -1,0 and 1, furthermore b € R”“'g‘m, where the first mn elements are equal to one and
the others are equal to zero.

Column consistency: We assume that the first |£|m rows of U and V correspond to the constraints )
based on (i, 7, 3).
Row consistency: the second half of the rows in U and V correspond to the constraints Zﬁeﬁ Tij:aB = Ti:o €numerated in lexicographic based on (i, j, a).

wer Tij:aB = Tj.5 enumerated in lexicographic order
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Dual LP

max <{(b,y) subject to ATy < c.
YisYij:orYji: 8

Note that the dual variables y; for all i € V and ;j.q, y;i:p for all (i,7) € €, a, B € L correspond to the constraints of the primal LP.

We can write y = [y{ y3 y3T]T, where y; = [y1 - yn]T e R", and y2 € REEI™ and y3 € RI€I™ are the vectors consisting of the variables y;;.5 and

Yij:o in the same order as it is defined in the case of the primal LP.

The cost function results in .
T
(b,y) = (b1,y1) +<{ba, [ys yi] )=n,y1)= Z Yi -
i=1

Lixn®1, | —UT c1
AT _ |: nxn m ] < |: —c.
y O|€\m2><n ‘ VT y C2

The constraints ATy < c are given by

IN2245 - Combinatorial Optimization in Computer Vision
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Dual LP

max <1n7YI>
YiYij:a Yji:8

: Lixn®1, | —UT ] [cl]
subject to < .
) [ 0\€|m2><n ‘ VT y C2

Or equivalently, we can formulate the dual LP as

max Z Yi
YirYij:aYji: 8 Py

subject to  y; — Z Yija < pi(a) VieV,ae L
JEV:(i,j)e€
Yij:a + Yji:B < wijd(a76) V(’L,j) € 57 aaﬁ eL

IN2245 - Combinatorial Optimization in Computer Vision
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An intuitive view of the dual variables
We will use the notation z; € L for the active label given the vertex i € V.

For each vertex we have a different copy of all labels in L. It is assumed that all these labels represent balls floating at certain heights relative to a reference
plane.

For this sake we introduce height variables defined as (7] M Py - 1
hlj .3 |A-‘a‘_°\ .
hZ(Oé) = QOZ(OZ) + Z yij:a . v Afe)fmmes 8¢ _— .E".l Oeeeent o
JeV,(ij)el el hfx, )0 e
The constraints y; — ZjeVz(m)eg Yij:a < @i(ar) can be equivalently written as
vi < i) + Z Yijia = hi(a) VieV,ae L.
jEV:(i,5)EE
Since our objective is to maximize } ., y;, the following relation holds
y; = min h;(«) VieV.
ael
IN2245 - Combinatorial Optimization in Computer Vision 18. FastPD algorithm — 17 / 56
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Balance variables and load
We will refer to the variables y;;.o., y;i.3 as balance variables. Specially, the pair of y;;., yji.o is called conjugate balance variables.

The balls are not static, but may move in pairs through updating pairs of conjugate balance variables as h;(a) = p;(a) + Zjev (i.j)e€ Yij:a- Therefore, the
role of balance variables is to raise or lower labels.

I fx,) -0
= - . |Bfa@)-

g b () penememmeens e @
3. I b
€)= h(x )0 ¥ ¢=x,

It is due to Yij:a + Yjia < wijd(a, ) =0 = Yijia < —Yjia-

We will call the variables y;;.,,, as active balance variable and use the following notation for the “load” between neighbors i, j, defined as

load; = Yijw; + Yjica; -

IN2245 - Combinatorial Optimization in Computer Vision 18. FastPD algorithm — 18 / 56
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Primal-dual LP for multi-label problem

The (relaxed) primal LP:

The dual LP:

min OZZQOZ'(G).I‘Z‘;&-F Z Wi Z d(a,ﬁ)xij:aﬁ

TiaoTijiap >0 I Lo (e aBel
subject to Y. . Ti:a =1 VieV
Zae[: Tij:aB = Tj:8 VB € E? (%J) €&
Z,@ec Tijiap = Tiia Vo €L, (i,j) €&

max Z Yi
YiYij:a Yji: B i

%
subject to  y; — Z Yija < pi(a) VieV,ae L
JEV:(i,5)EE
Yij:a + Yji:B < wijd(a76) V(’L,j) € ga aaﬁ eL

IN2245 - Combinatorial Optimization in Computer Vision
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Primal-dual principle

20 / 56

Primal-dual principle

T
¢ x
< r=——<e€ >
bly ¢ x )
Fo= T *..{6
¢ x

dual cost of
solution y

cost of optimal
integral solution x*

primal cost of
integral solution x

Theorem 1. Ifx and y are integral-primal and dual feasible solutions satisfying:

{¢,x) < e(b,y)

for e = 1, then x is an e-approximation to the optimal integral solution x*, that is

(e, x*) < {c,x) < &«b,y) < elc,x*) .

IN2245 - Combinatorial Optimization in Computer Vision
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The relaxed complementary slackness

One way to estimate a pair (x,y) satisfying the fundamental inequality {(c,x) < e(b,y) relies the complementary slackness principle.

Theorem 2. If the pair (x,y) of integral-primal and dual feasible solutions satisfies the so-called relaxed primal complementary slackness conditions:

o
Vj: i >0 = |,
ji(z;>0) = (;ajy 6j>

then (x,y) also satisfies {c,x) < e(b,y) with ¢ = max; €; and therefore x is an e-approximation to the optimal integral solution x*.

Proof. Exercise. Ol

IN2245 - Combinatorial Optimization in Computer Vision 18. FastPD algorithm — 22 / 56
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Primal-dual schema

Typically, primal-dual e-approximation algorithms construct a sequence (xk,yk)k:17,,.,t of primal and dual solutions until the elements x!, y* of the last pair
are both feasible and satisfy the relaxed primal complementary slackness conditions, hence the condition {c,x) < e(b,y) will be also fulfilled.

IN2245 - Combinatorial Optimization in Computer Vision 18. FastPD algorithm — 24 / 56
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Pseudo-code of the FastPD algorithm

1. [x,y] < Init Primals Duals()

2: labelC'hange «false

3: for all « € £ do > q-iteration
4: y «<PreEdit Duals(a,x,y)

5: [x',y'] <Update Duals Primals(a,X,y)
6: y’ «PostEdit Duals(a,x’,y’)

7: if X’ # x then

8: labelChange <—true

9: end if

10: x—x,y«y

11: end for

12: if labelC'hange then

13: goto 2

14: end if

15: y't < Dual Fit(y)

IN2245 - Combinatorial Optimization in Computer Vision 18. FastPD algorithm — 25 / 56
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PD1

26 / 56

Complementary slackness conditions

The complementary slackness conditions reduces to

(s
Yi — Z Yijex; = QO’L( Z) =
. - €1
jeV:(i,5)e€

wiid(zi, 5)
Yijiw; T Yjicwy; =2 —
€2

for specific values of €1,e2 = 1.

If z; = x; = o for neighboring 4, j, then

therefore we get that ¥;j.0 = —¥ij:a-

0 = wij.ad(a, @) = Yijia + Yijija =

y > pilzi) 3
€1 . .
JEV:(i,j)e€
wyjd(o, ) o,
€2

From now on, in case of Algorithm PD1, we only assume that d(«, 3) = 0 < «a = 3, and d(a, B) = 0.

Yij.x;

IN2245 - Combinatorial Optimization in Computer Vision
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Complementary slackness conditions

We have known that y; = minaers hi(a). If € = 1, then we get

vi Z @i(@) + ) Vi, = hilws)

jEV:(i,5)EE
Therefore
hi(z;) = minh;(a) ,
ael
which means that, at each vertex, the active label should have the lowest height.

If €2 = €app 1= Qjma"

, then the complementary condition simply reduces to:

min
wiid(z;, )

Yijex; + yij:xj =
€app

It requires that any two active labels should be raised proportionally to their “load”.

(1)

(@)

IN2245 - Combinatorial Optimization in Computer Vision
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Feasibility constraints

To ensure feasibility of y, PD1 enforces for any a € L:

Yij:a < wijdmin/2 where dmin = glélﬁl d(oz,ﬁ)

says that there is an upper bound on how much we can raise a label.

Hence, we get the feasibility condition
Yij:a + Yji:p < 2wijdmin/2 = wijdmin < wijd(aa B) :

Moreover the algorithm keeps the active balance variables non-negative, that is y;;.,, > 0 for all i € V.

The proportionality condition (2) will be also fulfilled as yij.c,, Yijz; = 0 and if Y., = w, then

wijdmin d(l‘i,l‘j) wijd(xi,:rj) wijd(xi,:rj)

ym.:m = 2 2dmax

Amax €app

dmin

IN2245 - Combinatorial Optimization in Computer Vision
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Subroutine Init_Primals_Duals()

1: function INIT_PRIMALS_DUALS

2 X is simply initialized by a random label assignment
3 for all (i,7) € £ with z; # z; do

4 Yijiz; < U)Ud(l‘“a?j)/Q

5: Yjicw; < —wijd(l‘i,l‘j)/Q

6 Yjizz; < wijd(:zi, .17])/2

7 Yijea; < —wijd(:ri,xj)/Q

8
9

end for

for all i € V do
10: Yi < Minger hi(a)
11: end for
12: return [x,y]

13: end function

= Init primals
> Init duals

IN2245 - Combinatorial Optimization in Computer Vision
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Update primal and dual variables

hfx, )=
=y . |Rhfa)-——0

i hfe)pmmmmmmeees O a
g 1 -
If) presseese I (ot Y- O 2 £

h(x,)

Dual variables update: Given the current active labels, any non-active label is raised, until it either reaches the active label, or attains the maximum raise

allowed by the upper bound (3).

Primal variables update: Given the new heights, there might still be vertices whose active labels are not at the lowest height. For each such vertex 7, we
select a non-active label, which is below z;, but has already reached the maximum raise allowed by the upper bound (3).

The optimal update of the a-heights can be simulated by pushing the maximum amount of flow through a directed graph G = (V u {s,t},&’,C).

IN2245 - Combinatorial Optimization in Computer Vision
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Flow construction: n-edges
For each (i, ) € £, we insert two directed edges ij and ji into &’.

The flow value f;;, f;; represent respectively the increase, decrease of balance variable y,,..:
! — 9. .. .. d / — /
Yijia = Yijia + fij =[50 and Yo = —Vijia -

According to (3), the capacities cap;; and cap,; are set based on

cap;; + Yijia = _wijdmin = cap;; + Yji:a - 1 , 1 *
J 2 j CaPy =3 Wpqdmin—Ypq(C)

qu
P o q

S T :
CEquI}—§ Wpgq dmm_?f'qp (‘?)

IN2245 - Combinatorial Optimization in Computer Vision 18. FastPD algorithm — 32 / 56
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Flow construction: n-edges

If o is already the active label of i (or j), then label v at ¢ (or j) need not move.

Therefore, Z'J;j:a = Yij:a and Z’J}m = Yjiza, that is

Ti=aorz;=a = cap; =cap; =0.

h(x,)

IN2245 - Combinatorial Optimization in Computer Vision
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Flow construction: t-edges

Each node i € V' — {s,t} connects to either the source node s or the sink node ¢ (but not to both of them).
There are three possible cases to consider:

Case 1 (hi(a) < hi(x;)): we want to raise label & as much as it reaches label ;. We connect source node s to node 1.

Due to the flow conservation property, f; = ZjeV:(z’,j)eE (fij = fii)-
The flow f; through that edge will then represent the total relative raise of label a:

hi(a) + fi = (%‘(04) + yij:a) + > (fy—fi)

JeV:(i,j)EE JeV:(i,j)EE
= (SOZ(O‘) + Z yij:a> + Z (ygj:a - yji:a)
JEV:(i,5)EE JEV:(i,5)EE
= pp(a) + Z ygj:a = hi(a) .
JeV:(4,5)e€
IN2245 - Combinatorial Optimization in Computer Vision 18. FastPD algorithm — 34 / 56
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Flow construction: t-edges

We need to raise o only as high as the current active label of ¢, but not higher than that, we therefore set:

capij = hz(l‘z) - hl(a) .

a0 by

hp(.:*)--------.”.'.co _____

LAY fffffff‘ffff‘,l'.

P

cdp
/.|cap,
IN2245 - Combinatorial Optimization in Computer Vision 18. FastPD algorithm — 35 / 56
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Flow construction: t-edges

Case 2 (hi(«) = hi(z;) and ¢ # x;): we can then afford a decrease in the height of « at 4, as long as « remains above z).

We connect ¢ to the sink node ¢ through directed edge it.
The flow f; through edge it will equal the total relative decrease in the height of a: p

K(a) = hia) — f hp(;:) ---------E{;) g

cap; = hp(a) — hi(w;) .
Cap}'h"

B0

FEEEEEErTErEr ey

/,|cap

(b) p

IN2245 - Combinatorial Optimization in Computer Vision 18. FastPD algorithm — 36 / 56
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Flow construction: t-edges

Case 3 (a = z;): we want to keep the height of « fixed at the current iteration.

Note that the capacities of the n-edges for p are set to 0, since i has the active label. Therefore, f; = 0 and hj; ,

= h'ij:oz-

By convention cap;; := 1.

h(x,)----0O

IN2245 - Combinatorial Optimization in Computer Vision 18. FastPD algorithm — 37 / 56
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Reassign rule

Label o will be the new label of i (i.e. 2} = ) iff there exists unsaturated path between the source node s and node i. In all other cases, i keeps its current
label (i.e. 2} = z;).

— w =2} — w =000 —
fz'j < cap;; '” B i =_: E'lf !_: g o
hi(a) — hi(a) < hi(z;) — hi(a) P '
hi(a) < hi(w:) = hi(w:) s o™ | ) | R o’ {120
fJ [/] —— T A, .Jr;yl
I 70}----@ Lo 7 paene=s 0
3 a=x, . I A a=x,
/] SR Ed
T T R T
=100
T =I e
cap,, =125
] 5
IN2245 - Combinatorial Optimization in Computer Vision 18. FastPD algorithm — 38 / 56
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Some properties

Based on the reassign rule the following three properties hold:
A hi(z;)) = min{hi(z:), b (a)}
B z,=a# :):; = y;jw; = cap;; + Yijua

C APFY' < APFXY, where APF*Y is defined as

APPY & 3T hi(ws) = 3, (wila) + X v

% % JEV,(i,5)e€

= Z (90l($z) + (yij::ci + yji:xj>>
9% (3,5)e€

< Z QOi(:L‘) + Z wijd(:zi,a:j) = E(X) .

9% (3,9)e€

The last condition shows that the algorithm terminates (assuming integer capacities), due to the reassign rule, which ensures that a new active label has
always lower height than the previous active label, i.e. hl(z}) < hi(z;).

IN2245 - Combinatorial Optimization in Computer Vision 18. FastPD algorithm — 39 / 56
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Subroutine Update_Duals_Primals(a,x,y)

1: function UPDATE_DUALS_PRIMALS(a,X,y)
2 X —x,y <y

3 Apply max-flow to G’ and compute flows f;, f;;
4: for all (,j) € £ do

5: Yijia < Yijia + fij — fji
6: end for

7 for all i €V do

8 x; < « < 3 unsaturated path s v~ i in G’
9 end for

10: return [x,y’]

11: end function

IN2245 - Combinatorial Optimization in Computer Vision 18. FastPD algorithm — 40 / 56

Subroutine PostEdit_Duals(a,x’,y’)

The goal is to restore all active balance variables y;;.,,, to be non-negative.

/ /. / — .
L.} = o # 2}t we have cap;j, yij.a = 0, therefore ;. = cap;; + yijia =

/

0.
2.z} =ua%=a: wehavey; , = —y).,, therefore load;; = v}, , + ¥}, = 0. By setting y;.(a) = ¢/}, , = 0 we get load;; = 0 as well.

7
Since none of the “load” were altered, the APF*Y remains unchanged.

1: function PosTEDIT_DUALS(, X", y’)

2: for all (i, j) € £ with (2] = 2 = @) and (y;;,, <0 or y}; , <0) do
3 y;j:oz <0, y}i:a <0

4: end for

5: forallieV do

6: yi — mingeg bl (a)

7 end for

8: return y’

9: end function
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€app-a@pproximate solution
In summary, one can see that PD1 always leads to an e-approximate solution:
Theorem 3. The final primal-dual solutions generated by PD1 satisfy

1. hi(x;) = minges hi(a) for alli eV,
2. @i+ xj = loady; > LUt for o1 (i, j € £),

3. Yijia < % for all (i,j€&) and a € L,

and thus they satisfy the relaxed complementary slackness conditions with €1 = 1, €2 = €5pp = 2dinax
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PD2 43 / 56

Parametrization of the PD2 algorithm

We now assume that d is a metric.
1

€app

In fact, PD2 represents a family of algorithms parameterized by p € [——,1]. Algorithm PD2,, will achieve slackness conditions with

A 1
€1 = [€app = 6—eapp >1 and € = €app -

app
Algorithm PD1 always generates a feasible dual solution at any of its inner iterations, whereas PD2,, may allow any such dual solution to become
infeasible.

Dual-fitting: PD2,, ensures that the (probably infeasible) final dual solution is “not too far away from feasibility”, which practically means that if that
solution is divided by a suitable factor, it will become feasible again.
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Complementary slackness conditions

Similarly to Algorithm PD1, the equalities will hold for i € V

2

1€V, (i,j)e€

Yi = lglelg hi(o) = hi(z;) = pi(z;) + Yijix; -

PD2,, generates a series of intermediate pairs satisfying complementary slackness conditions for €e; > 1 and ez >

2 2

€V, (i,5)e€ €V, (i,5)e€
wijd(:zi, :L‘j)

©i(x;)
€1

=Yi

+ Yijias < i) + Yijoes = hi(;)

X7y
. < uwijd(:zi,a:j) = Ioadij
2

Like PD1, PD2;, also maintains non-negativity of active balance variables.

1
I

- 1/Eapp

1 )
= €app:

Vie)V.

V(i,j) e €& .
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Dual fitting

conditions:

Yij:a + Yji:B < 2luwz’jdmax V(’L,j) € 87 VO‘,B eL.

_ QI“U'L'j Armax
H2dmax/dmin

fit
yij:a

fit Yij:a + Yji:B < 2/1*wijdmax

+ Y.
TP HE€app H€app

This means that yfit is feasible.

1: function DUAL_FIT(y)
2: return yfit — ¥

. H€app
3: end function

The dual solution of the last intermediate pair may be infeasible, since, instead of the feasibility condition y;;.o + y;i.3 < w;;d(a, 3), PD2,, maintains the

These conditions also ensure that the last dual solution y, is not “too far away from feasibility” .By replacing y with yfit =

= Wi dmin < wi;d(a, 3).

—Y_ we get that
H€app

33



IN2245 - Combinatorial Optimization in Computer Vision 18. FastPD algorithm — 46 / 56

34



€app-a@pproximate solution

The primal-dual pair (x,y"") satisfies complementary conditions with ¢; = He€app = 1 and €2 = €5pp thus leading to an e,pp-approximate solution as well.

Indeed, it holds that:

Furthermore

fit A Yi ming, h; (@) _ hi(z;) _ wi(z;) + Zjev,(i,j)eg Yijia;
’ He€app H€app H€app H€app
pi(z:) fi
H€app
fit i _ Yigw tYjie,  loady  pwid(wi, ;)

yij:;vi + yji::vj [1€app

_ wijd(xy, x5)

He€app He€app €app
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which ensures that

Update primal and dual variables

The main/only difference in the subroutine Update Duals Primals(a,x,y) is the definition of the capacities corresponding to the n-edges. More
precisely, assuming an a-iteration, where ; = 3 # « and x; = v # « for a given (i, j) € &£:

cap;; = /"‘wij(d(/Ba a) + d(a,'y)

Capji =0.

All the capacities in the flow must be non-negative. This motivates that d must be a metric.
By applying Ioadzcj’y = Yij:8 + Yjiy = pw;jd(B,y) one can get

Yijia = Yijia + CAP;; = Yijia + pawij (d(B, @) + d(er, ) —
= Yijia + Yij:p + Yjia + pwijd(o,Y) = Yijip — Yjiry = pwigd(a, y) — Yjisy

load?Y = Yijia + Yjiny = (pwigd(,Y) = Yjiry) + Yjiry = pwigd(e, ) -

—d(B8,7)) , (4)

d(8,7))
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Subroutine PreEdit_Duals(a,x,y)

The role of this routine is to edit current solution y, before the subroutine Update Duals Primals(«,x), so that

IoadZ’y = Yij:«a + Yjizy = Mwijd(aa 7) .

1. function PREEDIT_DuALS(,Xx,y)

2 for all (4,7) € € with z; # «, x; # o do
3: Yijia — Pwigd(a,Y) — Yjizy

4 Yjira < Yjiry — Hwid(, )

5 end for

6 return y

7: end function

Therefore neither the “load” nor the APF function is altered.
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Equivalence of PD2,_; and a-expansion

One can shown that PD2,,_; indeed generates an ¢€,p, solution.

If < 1, then neither the primal (nor the dual) objective function necessarily decreases (increases) per iteration. Instead, APF constantly decreases.
If 1 =1, then load;; = wj;d(z;, ;). It can be shown that APF*Y = E(x), whereas in any other case APF*Y < E(x) (due to property C).

Recall that APF is the sum of active labels heights and PD2,,_; always tries to choose the lowest label among x,, and « (see property A). During an
a-iteration, PD2,—1 chooses an x’ that minimizes APF with respect to any other a-expansion X of current solution x.

Theorem 4. Let (x',y') denote the next prima-dual pair due to an a-iteration and X denote a-expansion of the current primal. Then

E(x') = APF*Y < APFY' < E(%) .

E(x') < E(x) proves that the a-expansion algorithm is equivalent to PD2,,_;.
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PD3 51 / 56

Algorithm PD3,
By modifying the Algorithm PD2,,_1, we will get Algorithm PD3, which can be applied even if d is non-metric function.
Recall that PD2,,—; maintains the optimality criterion: load;; < w;jd(x;,x;).

Since d is not metric, we have conflicting label-triplet (o, 8,7):
d(B,7) > d(B, @) + d(a,7) .

Algorithm PD3,: During the primal-dual variable update, in an a-iteration, when z; # a and x; # «, i.e. in (4), we set cap;; = 0.

It can be shown that for a conflicting triplet
load;; = wq; (d(B,7) — d(B, @) = wid(a,7) .

Intuitively, PD3, overestimates the distance between labels «, v in order to restore the triangle inequality for the current conflicting label-triplet («, 3, 7).
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PD3,

We choose to set cap;; = +00 and no further differences between PD3;, and PD2,,_; exist.

This has the following important effect: the solution x’ produced at the current iteration, can never assign the pair of labels 7, 3 to the objects i, j
respectively.

In the metric case we can choose the best assignment among all a-expansion moves, whereas in the non-metric case we are only able to choose the best one
among a certain subset of these c-expansion moves.
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PD3.
PD3, first adjusts the dual solution y so that, for any (i,j) € &:

Ioadij < wijd(a77) + d(’Y?B) .
After this initial adjustment, PD3. proceeds exactly as PD2,,—;, except for the fact that the term d(«, 8) (4) is replaced

. load;
A(B,7) & S < d(B,0) +d(a)

Intuitively, PD3, works in a complementary way to PD3, algorithm, i.e. in order to restore the triangle inequality for the conflicting label-triplet (v, 3,7),
instead of overestimating the distance between either labels o,y or a, 3, it chooses to underestimate the distance between labels (53, 7).
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IN2245 - Combinatorial Optimization in Computer Vision

Results: stereo matching

Original (left) PD1 PD2,—; with Potts distance
Distance d(«, 8) H et ot b3 o3 ehD3e H €app
[(a # 5] 1.0104 1.0058 1.0058 1.0058 1.0058 2
min(5, | — B]) || 1.0226 1.0104 1.0104 1.0104 1.0104 | 10
min(5, |a — 3|) || 1.0280 - 1.0143 1.0158 1.0183 || 10
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