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Introduction
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We address the problem of binary image segmentation, where we also consider
non-local parameters that are known a priori.

For example, one can assume prior knowledge about the shape of the foreground
segment or the color distribution of the foreground and/or background.

Let us consider a set of pixels V and a set of edges E consisting of 8-connected
pairs of pixels. We define an energy function for non-local parameter ω:

Epx, ωq “ Cpωq `
ÿ

pPV
F ppωq ¨ xp `

ÿ

pPV
Bppωq ¨ p1´ xpq `

ÿ

pp,qqPE
P pqpωq ¨ |xp ´xq| ,

where Cpωq is a constant potential, and F ppωq and Bppωq are the unary potentials
defining the cost for assigning the pixel p to the foreground and to the background,
respectively. P pqpωq is the pairwise potential that is non-negative to ensure the
tractability of Epx, ωq.

Globally optimal segmenation
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The segmentation is given by binary labeling x P 2V , where individual pixel labels
are denoted by xp P B (1:foreground, 0:background). We assume that non-local
parameter ω P Ω are taken from a discrete set.

Shape priors will be encoded as a product space of various poses and deformations
of the template, while color priors will correspond to the set of parametric color
distributions.

The goal is to achieve a globally optimal segmentation under non-local priors.
The applied optimization method relies on two techniques: graph cuts and
branch-and-bound.

Although a global minimum can be achieved, the worst case complexity of the
method is large (essentially, the same as the exhaustive search over the space of
non-local parameters).

An alternative way to solve the problem is to apply alternating minimization.

Lower bound
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LpΩq denotes the lower bound for Epx, ωq over 2V ˆ Ω:

min
xP2V ,ωPΩ

Epx, ωq

“ min
xP2V ,ωPΩ

!
Cpωq `

ÿ

pPV
F ppωq ¨ xp `

ÿ

pPV
Bppωq ¨ p1 ´ xpq `

ÿ

pp,qqPE
P pqpωq ¨ |xp ´ xq|

)

ě min
xP2V

!
min
ωPΩ Cpωq `

ÿ

pPV
min
ωPΩ F ppωq ¨ xp `

ÿ

pPV
min
ωPΩ Bppωq ¨ p1 ´ xpq`

ÿ

pp,qqPE
min
ωPΩ P pqpωq ¨ |xp ´ xq|

)

“ min
xP2V

!
CΩ `

ÿ

pPV
F p
Ωpωq ¨ xp `

ÿ

pPV
Bp

Ωpωq ¨ p1 ´ xpq `
ÿ

pp,qqPE
P pq
Ω pωq ¨ |xp ´ xq|

)

“LpΩq .

CΩ, F
p
Ω, B

p
Ω, P

pq
Ω denote the minima of Cpωq, F ppωq, Bppωq, P pqpωq over ω P Ω

referred as aggregated potentials.

Monotonicity

IN2245 - Combinatorial Optimization in Computer Vision 19. Branch and Mincut – 6 / 17

Suppose Ω1 Ă Ω2, then the inequality LpΩ1q ě LpΩ2q holds.

Proof. Let us define Apx,Ωq as

Apx,Ωq ∆“min
ωPΩ Cpωq `

ÿ

pPV
min
ωPΩ F ppωq ¨ xp `

ÿ

pPV
min
ωPΩ Bppωq ¨ p1 ´ xpq

`
ÿ

pp,qqPE
min
ωPΩ P pqpωq ¨ |xp ´ xq| .

Assume Ω1 Ă Ω2. Then, for any x

Apx,Ω1q
“ min

ωPΩ1

Cpωq`
ÿ

pPV
min
ωPΩ1

F ppωqxp`
ÿ

pPV
min
ωPΩ1

Bppωqp1 ´ xpq`
ÿ

pp,qqPE
min
ωPΩ1

P pqpωq|xp ´ xq|

ě min
ωPΩ2

Cpωq`
ÿ

pPV
min
ωPΩ2

F ppωqxp`
ÿ

pPV
min
ωPΩ2

Bppωqp1 ´ xpq`
ÿ

pp,qqPE
min
ωPΩ2

P pqpωq|xp ´ xq|

“ Apx,Ω2q .

Monotonicity
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Proof. Continued

Note that LpΩq “ minxP2V Apx,Ωq.
Let x1 P argminxP2V Apx,Ω1q and x2 P argminxP2V Apx,Ω2q, then from the
monotonicity, one gets:

LpΩ1q “ Apx1,Ω1q ě Apx1,Ω2q ě Apx2,Ω2q “ LpΩ2q .

Computability and tightness
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Computability: the lower bound LpΩq equals the minimum of a submodular
quadratic pseudo-boolean function, which can be globally minimized via graph-cut.

Tightness: for a singleton Ω “ ω (i.e. |Ω| “ 1) the bound LpΩq is tight, that is

Lptωuq “ min
xP2V

Epx, ωq .



Best-first branch-and-bound optimization
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The discrete domain Ω can be hierarchically clustered and the binary tree of its
subregions can be considered.

At each step the active node with the smallest lower bound is removed from the
active front, while two of its children are added to the active front (due to
monotonicity property they have higher or equal lower bounds).

Best-first branch-and-bound optimization
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If the active node with the smallest lower bound turns out to be a leaf tω1u and x1
is the corresponding optimal segmentation, then Epx1, ω1q “ Lpω1q due to the
tightness property. Consequently, px1, ω1q is a global minimum.

Remark that in worst-case any optimization has to search exhaustively over Ω.

Pseudo code of Branch-And-Mincut ˚
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1: Front Ð H Ź initializing the priority queue
2: rC0, tF p

0 u, tBp
0u, tP pq

0 us ÐGetAggregPotentials(Ω0)

3: LB0 ÐGetMaxFlowValue(tF p
0 u,tBp

0u,tP pq
0 u)`C0

4: Front.InsertWithPriority(Ω0,´LB0)

5: while true do Ź advancing front
6: Ω Ð Front.PullHighestPriorityElement()
7: if IsSingleton(Ω) then Ź global minimum found

8: ω Ð Ω
9: rC, tF pu, tBpu, tP pqus ÐGetAggregPotentials(ω)
10: x ÐFindMinimumViaMincut(tF pu,tBpu,tP pqu)
11: return px, ωq
12: end if

13: rΩ1,Ω2s ÐGetChildrenSubdomains(Ω)
14: rC1, tF p

1 u, tBp
1u, tP pq

1 us ÐGetAggregPotentials(Ω1)

15: LB1 ÐGetMaxFlowValue(tF p
1 u,tBp

1u,tP pq
1 u)`C1

16: Front.InsertWithPriority(Ω1,´LB1)

17: rC2, tF p
2 u, tBp

2u, tP pq
2 us ÐGetAggregPotentials(Ω2)

18: LB2 ÐGetMaxFlowValue(tF p
2 u,tBp

2u,tP pq
2 u)`C2

19: Front.InsertWithPriority(Ω2,´LB2)

20: end while

Segmentation with shape priors
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The prior is defined by the set of exemplar binary segmentations tyω | ω P Ωu,
where Ω is a discrete set indexing the exemplar segmentations.

We define a joint prior over the segmentation and the non-local parameter:

Epriorpx, ωq “
ÿ

pPV
p1 ´ yωp q ¨ xp `

ÿ

pPV
yωp ¨ p1 ´ xpq .

This encourages the segmentation x to be close in the Hamming-distance to one
of the exemplar shapes.

The segmentation energy may be defined by adding a standard contrast-sensitive
term for λ, σ ą 0:

Eshapepx, ωq “ Epriorpx, ωq ` λ
ÿ

pp,qqPE

e´ }Kp´Kq}
σ

|p ´ q| ¨ |xp ´ xq| ,

where Kp denotes RGB colors of the pixel p.

Multiple templates ˆ translations
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The shape prior is given by a set of templates, whereas each template can be
located anywhere within the image.

Ωshape “ ∆ ˆ Θ, where the set ∆ indexes the set of all exemplar segmentations yδ
and Θ corresponds to translations.

Any exemplar segmentation yω for ω “ pδ, θq is then defined as some exemplar
segmentation yδ centered at the origin and then translated by the shift θ.

Clustering tree
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For ∆ we use agglomerative bottom-up clustering resulting clustering tree
T∆ “ t∆ “ ∆0,∆1, . . . ,∆Nu.
To build a clustering tree for Θ, we recursively split along the “longer” dimension.
This leads to a tree TΘ “ tΘ “ Θ0,Θ1, . . . ,ΘNu.

Branch operation

IN2245 - Combinatorial Optimization in Computer Vision 19. Branch and Mincut – 15 / 17

Each nodeset Ωt in the combined tree is defined by a pair ∆pptq ˆ Θqptq
The looseness of a nodeset Ωt is defined as the number of pixels that change their
mask value under different shapes in Ωt (i.e. neither background nor foreground):

ΛpΩtq “ |tp | Dω1, ω2 : y
ω1
p “ 0 and yω2

p “ 1u| .
The tree is built in a recursive top-down fashion as follows.

We start by creating a root nodeset Ω0 “ ∆0 ˆ Θ0. Given a nodeset Ωt “ ∆t ˆΘt

we consider (recursively) two possible splits: 1) split along the shape dimension or
2) split along the shift dimension. The split that minimizes the sum of loosenesses
is preferred.

The recursion stops when the leaf level is reached within both the shape and the
shift trees.

Results ˚
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Yellow: global minimum of Eshape; Blue: feature-based car detector; Red: global minimum
of the combination of Eshape with detection results (detection is included as constant

potential)

The prior set ∆ was built by manual segmentation of 60 training images coming
with the dataset.
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