
Combinatorial Optimization in
Computer Vision (IN2245)

Frank R. Schmidt
Csaba Domokos

Winter Semester 2015/2016

20. Fast Trust Region

Trust Region Shape Distances Quadratic Pseudo-Boolean Optimization Regional Functions

Trust Region

Trust Region Shape Distances Quadratic Pseudo-Boolean Optimization Regional Functions

Continuous Functions

Trust Region Shape Distances Quadratic Pseudo-Boolean Optimization Regional Functions

IN2245 - Combinatorial Optimization in Computer Vision 20. Fast Trust Region – 4 / 24

The trust region framework is a popular framework for continuous energy
minimization. After revising it, we will see how it can be adapted for
combinatorial optimization.

In the continuous setup, we assume that a smooth function f : Rn Ñ R is given,
i.e., f and all its derivatives are continuous and themselves differentiable.

The general derivatives turn out to be high-order tensors. For that reason, we will
focus just on the 1st and 2nd order derivatives.

The gradient ∇f and the Hesse matrix Hf (cf. Analysis I/II) are mappings

∇f : Rn Ñ Rn Hf : Rn Ñ Rnˆn.

Taylor Approximations
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Given a specific point x0 P Rn, we can define the Taylor sequence (cf.
Analysis I / II). Of practical use are the 1st and 2nd order Taylor approximations

T 1
x0
fpxq “ fpx0q` x∇fpx0q, x ´ x0y

T 2
x0
fpxq “ fpx0q` x∇fpx0q, x ´ x0y

`1

2
xHfpx0q ¨ px ´ x0q, x ´ x0y .

Since the minimization of linear and quadratic functions is easy to perform, most
local minimization approaches focus on the linear Taylor approximation T 1f or the
quadratic Taylor approximation T 2f .

Approximation Reliability
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All Taylor approximations are accurate for x “ x0, but the further we move away
from this development point x0, the less reliable the approximation becomes.

Thus, we want to define a region around x0 in which we trust a specific
approximation. This region can be defined by a single parameter, its distance
d P R` from the development point x0, i.e.,

Bdpx0q :“ tx P Rn| }x ´ x0} ď du

During the trust region optimization, we will adapt this distance d. It is
therefore not a global parameter, but a parameter that changes due to the local
behavior of the function f .

Trust Region Method
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Let us assume that we have an energy f : Rn Ñ R and for each x0 P Rn an
approximative energy f̃x0 : Rn Ñ R such that f̃x0px0q “ fpx0q. Then, the trust
region method works as follows:

1. Let x0 P Rn be an arbitrary initial solution and d ą 0 be an arbitrary initial
distance that defines the trust region Bdpx0q around x0.

2. Let x˚ be a global optimum of the trust region subproblem:

min
xPBdpx0q

f̃x0pxq

3. Set ρ :“ fpx0q´fpx˚q
f̃x0px0q´f̃x0px˚q .

4. If ρ ą τ1, set x0 :“ x˚.
5. If ρ ą τ2, set d :“ d ¨ α, otherwise d :“ d{α.
6. If not converged, go to Step 2.

Trust Region Parameters
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There are three different design parameters for the trust region method, namely
0 ă τ1 ă τ2 ă 1 and α ą 1.

The α-parmeter describes how the trust region changes during the method. It is
common to use α “ 2.

The τ1-parmeter controls when to accept x˚ as a good candidate. In the
continuous framework, τ1 ą 0 has to be chosen in order to guarantee convergence.
In the combinatorial framework, we can also use τ1 “ 0, but this may result in a
higher running time.

The τ2-parmeter controls when to expand or shrink the trust region.
A common choice is τ2 “ 0.25.



First Order Trust Region
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If we use T 1
x0
f as the approximative energy f̃x0 , the trust region subproblem

min
}x´x0}ďd

fpx0q ` x∇fpx0q, x ´ x0y

is uniquely minimized by

x˚ “ x0 ´ d ¨ ∇fpx0q
}∇fpx0q}

In the case of the first order Taylor approximation, the trust region method is a
gradient descent variant.

It is called the normalized gradient descent method.

Second Order Trust Region

Trust Region Shape Distances Quadratic Pseudo-Boolean Optimization Regional Functions

IN2245 - Combinatorial Optimization in Computer Vision 20. Fast Trust Region – 10 / 24

If we use T 2
x0
f as the approximative energy f̃x0 , the trust region subproblem

min
}x´x0}ďd

fpx0q ` x∇fpx0q, x ´ x0y ` 1

2
xHfpx0qpx ´ x0q, x ´ x0y

is uniquely minimized by x˚ P Bdpx0q. This method is called the trust region
Newton method.

For big d, we obtain

x˚ “ x0 ´ Hfpx0q´1p∇fpx0qq,
which is the Newton iteration.

Summary and Outlook: Trust Region
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The trust region framework can be seen as a generalization of different, continuous
optimization techniques.

In particular, it includes the normalized gradient descent approach and the trust
region Newton method.

Nonetheless, it is not restricted to continuous energy minimization. In fact, it can
be easily extended to arbitrary combinatorial problems.

In order to do this, we have to make specific decisons: Firstly, we have to define
the approximation Ẽ of function E given a specific discrete solution S0.

Secondly, we have to define a trust region with respect to S0.

Thirdly, we have to find the global optimum of Ẽ within the trust region.

Shape Distances
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Given a specific segmentation S0 Ă Ω, we want to define a region BdpS0q Ă PpΩq
of segmentations for which we like to trust an approximation Ẽ of an energy E.

This can be done by introducing a positive definite distance function
dist : PpΩq ˆ PpΩq Ñ R`

0 on the set PpΩq of possible segmentations.

A commonly used distances between sets is the Hamming distance:

distHpS, T q “areapS△T q
“

ż

SzT
1dx `

ż

T zS
1dx

“
ż

S´pSXT q
1dx `

ż

T´pSXT q
1dx

Hamming Distance
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Hamming Indicator φS

distHpS, T q “
ż

T´pSXT q
1dx `

ż

S´pSXT q
1dx

“
ż

T´pSXT q
φSdx ´

ż

S´pSXT q
φSdx

“
ż

T
φSdx ´

ż

S
φSdx

Modular Distances
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Hamming Indicator φS Signed Distance Shape Distance

The Hamming distance distHpS, T q is modular in T and can therefore be easily
optimized. Similarily, we can define different modular distance function like dist2
that is driven by the signed distance function.

distHpS, T q “
ż

T
φSpxqdx ´

ż

S
φSpxqdx

dist2pS, T q “
ż

T
sdfS0pxqdx ´

ż

S
sdfSpxqdx

Quadratic Pseudo-Boolean
Optimization
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Local Submodular Approx. of QPBO
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Given a quadratic pseudo-Boolean funtion E : Bn Ñ R

Epxq “ C `
nÿ

i“1

fixi `
nÿ

i,j“1
fi,jă0

fi,jxixj `
nÿ

i,j“1
fi,ją0

fi,jxixj

and an initial segmentation xp0q P Bn, we define the following submodular
approximation of E:

Ẽpxq “ C `
nÿ

i“1

fixi `
nÿ

i,j“1
fi,jă0

fi,jxixj `
nÿ

i,j“1
fi,ją0

fi,jx
p0q
i xj ` fi,jxix

p0q
j

This approximation only computes the first order Taylor approximation for the
supermodular term. It is therefore a submodular (not a linear) approximation.

Combinatorial Constrained Optimization
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Given the submodular energy Ẽ, we like to solve

min
distpx0,xqďd

Ẽpxq. (1)

We can relax this problem by minimizing

Ẽpxq ` λ ¨ distpx0, xq (2)

instead.

Note that λ “ 0 (λ “ 8) in (2) leads to the same solution as d “ 8 (λ “ 0)
in (1). Thus, we can assume a relationship of d « 1

λ .

This leads to a different method, that we called Fast Trust Region.

Fast Trust Region Method
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Let us assume that we have an energy E : Bn Ñ R and for each x0 P Bn an
approximative energy Ẽx0 : Bn Ñ R such that Ẽx0px0q “ Epx0q. Then, the fast
trust region method works as follows:

1. Let x0 P Bn be an arbitrary initial solution and λ ą 0.
2. Let x˚ be a global optimum of the fast trust region subproblem:

min
xPBn

Ẽx0pxq ` λ ¨ distpx0, xq

3. Set ρ :“ Epx0q´Epx˚q
Ẽx0px0q´Ẽx0px˚q .

4. If ρ ą τ1, set x0 :“ x˚.
5. If ρ ą τ2, set λ :“ λ{α, otherwise λ :“ λ ¨ α.
6. If not converged, go to Step 2.

In practice, we choose τ1 “ 0, τ2 “ 0.25 and α “ 2.

Segmentation with Repulsion
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The classical image segmentation framework combines a data term with a length
term

Epxq “
nÿ

i“1

fixi `
nÿ

i“1

ÿ

jPN piq
fijxixj fij ď 0.

The length term can also be seen as an attraction force, since label clusters
attract each other. In other words, it is cheaper to combine two clusters into one
cluster if they are close to one another.

If we want to model a repulsion force, we need to use supermodular terms:

fij “ |Ipiq ´ Ipjq| ´ c

distpi, jq

Image Segmentation with Repulsion
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Image Graph Cut QPBO
(without Repulsion)

TRWS FTR

Regional Functions
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Outlook: Regional Functions
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In the next lecture we will address a special class of higher-order
pseudo-Boolean energies

EpSq “ E0pSq ` RF
tfiuiăk

pSq

■ E0 is a submodular function
■ RF

tfiuiăk
is a regional function, i.e.,

RF
tfiuiăk

pSq “ F pxf0, Sy , . . . , xfk´1, Syq
where

fi : Ω Ñ R “indicator” function

F : Rk Ñ R smooth composition
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