Combinatorial Optimization in Computer Vision (IN2245)

Frank R. Schmidt Csaba Domokos

Winter Semester 2015/2016

22. Probabilistic parameter learning		2
Parameterization	:	3
Conditional Random Fields revisited	4	4
Conditional Random Fields revisited		5
Example: Binary image segmentation	6	6
Example: Binary image segmentation		7
Parameterization	8	3
Parameter learning	9	9
Loss function	10	J
0/1 loss	13	1
Hamming-loss	12	2
Learning tasks	13	3
Loss function O/1 loss Hamming-loss Learning tasks Parameter Learning	14	4
Probabilistic parameter learning	15	5
Probabilistic parameter learning Probabilistic parameter learning	10	б
Probabilistic parameter learning.		

Maximum conditional likelihood	18
Prior belief on $p(w)$	
Negative conditional log-likelihood	20
Regularized conditional log-likelihood	21
Regularized Maximum Conditional Likelihood Training	22
Negative conditional log-likelihood:Toy example	23
Steepest Descent Minimization	24
Gradient Based Optimization	25
Hessian of $L(w)$	26
Numerical solution	
Piecewise learning	28
Piecewise learning	29
Two-stage learning	30
literature	31

22. Probabilistic parameter learning

2 / 31

Parameterization 3 / 31

Conditional Random Fields revisited

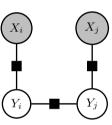
Let us suppose a set of random variables, denoted by $\{Y_i\}_{i\in\mathcal{V}}$, where \mathcal{V} is a set of pixels. Moreover $Y_i\in\mathcal{Y}_i$ for all $i\in\mathcal{V}$, hence $\mathcal{Y}=\times_{i\in\mathcal{V}}\mathcal{Y}_i$. Let us assume that we have also access to measurements $X=x\in\mathcal{X}$ (e.g., \mathcal{X} is a set of images).

As we have already discussed (cf. Lecture 4), the *conditional probability distribution* $p(Y = y \mid X = x)$, expressed by an underlying **conditional random** field (CRF) model, can be directly modeled by a **factor graph** $G = (\mathcal{V}, \mathcal{F}, \mathcal{E})$:

$$p(y \mid x) = \frac{1}{Z(x)} \prod_{F \in \mathcal{F}} \psi_F(y_F; x_F)$$

with the partition function depending on x_F

$$Z(x) = \sum_{y \in \mathcal{Y}} \prod_{F \in \mathcal{F}} \psi_F(y_F; x_F) .$$



Shaded: the observations X = x.

IN2245 - Combinatorial Optimization in Computer Vision

22. Probabilistic parameter learning – 4 / 31

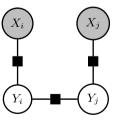
Conditional Random Fields revisited

 $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{F}$, and \mathcal{F} encodes the *conditional independence assumption*.

$$p(y \mid x) = \frac{1}{Z(x)} \prod_{F \in \mathcal{F}} \psi_F(y_F; x_F)$$

with the **partition function** depending on x_F

$$Z(x) = \sum_{y \in \mathcal{Y}} \prod_{F \in \mathcal{F}} \psi_F(y_F; x_F) .$$



Shaded: The observations X = x

Note that the potentials become also functions of (part of) x, i.e. $\psi_F(y_F; x_F)$ instead of just $\psi_F(y_F)$. Nevertheless, x is **not** part of the probability model, i.e. it is not treated as random variable.

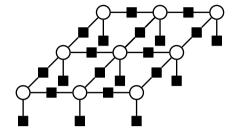
Example: Binary image segmentation

Assume that we are given a set of pixels \mathcal{V} . Consider the problem of binary image segmentation with a label set \mathcal{L} .

We have also defined the energy function

$$E(y;x) = \sum_{F \in \mathcal{F}} E_F(y_F; x_F)$$

corresponding to a CRF model $G = (\mathcal{V}, \mathcal{F}, \mathcal{E})$.



 $p(y \mid x)$ is completely determined by E(y; x):

$$p(y \mid x) = \frac{1}{Z(x)} \prod_{F \in \mathcal{F}} \psi_F(y_F; x_F) = \frac{1}{Z(x)} \exp(-\sum_{F \in \mathcal{F}} E_F(y_F; x_F))$$
$$= \frac{1}{Z(x)} \exp(-E(y; x)).$$

IN2245 - Combinatorial Optimization in Computer Vision

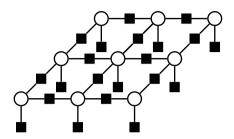
22. Probabilistic parameter learning – 6 / 31

Example: Binary image segmentation

We are generally interested in a **MAP labelling** y^* :

$$y^* \in \underset{y \in \mathcal{L}^{\mathcal{V}}}{\operatorname{argmin}} E(y; x) .$$

Now we assume that \mathcal{F} consists of only *unary* and *pairwise* factors.



Let
$$\mathcal{E}'$$
 encode a local neighborhood of pixels, one can write the energy function as
$$E(y;x) = \sum_{F \in \mathcal{F}} E_F(y_F;x_F) = \sum_{i \in \mathcal{V}} E_i(y_i;x_i) + \sum_{(i,j) \in \mathcal{E}'} E_{ij}(y_i,y_j;x_i,x_j)$$

$$= \sum_{i \in \mathcal{V}} E_i(y_i;x_i) + \sum_{(i,j) \in \mathcal{E}'} E_{ij}(y_i,y_j) \;,$$

where $E_i(y_i; x_i)$ corresponds to the data term of the pixel i, and $E_{ij}(y_i, y_j; x_i, x_j) \equiv E_{ij}(y_i, y_j)$ is a smoothness term.

IN2245 - Combinatorial Optimization in Computer Vision

22. Probabilistic parameter learning – 7 / 31

Parameterization

Instead of

$$E(y;x) = \sum_{i \in \mathcal{V}} E_i(y_i;x_i) + \sum_{(i,j) \in \mathcal{E}'} E_{ij}(y_i,y_j) ,$$

one may want to apply weighting factors $w_1, w_2 \in \mathbb{R}_+$:

$$E(y;x,w) = w_1 \sum_{i \in \mathcal{V}} E_i(y_i;x_i) + w_2 \sum_{(i,j) \in \mathcal{E}'} E_{ij}(y_i,y_j) = \langle \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}, \begin{bmatrix} \sum_{i \in \mathcal{V}} E_i(y_i;x_i) \\ \sum_{(i,j \in \mathcal{E}')} E_{ij}(y_i,y_j) \end{bmatrix} \rangle.$$

In a more general form, one can write the *energy functions* as a **linear combination** for a **parameter vector** $w \in \mathbb{R}^D$, $D = |\mathcal{F}|$:

$$E(y; x, w) = \left\langle \begin{bmatrix} w_1 \\ \vdots \\ w_D \end{bmatrix}, \underbrace{\begin{bmatrix} E_{F_1}(y_{F_1}; x_{F_1})) \\ \vdots \\ E_{F_D}(y_{F_D}; x_{F_D})) \end{bmatrix}}_{\varphi(x, y)} \right\rangle = \left\langle w, \varphi(x, y) \right\rangle.$$

IN2245 - Combinatorial Optimization in Computer Vision

22. Probabilistic parameter learning – 8 / 31

Parameter learning 9 / 31

Loss function

The goal is to make predictions $y \in \mathcal{Y}$, as good as possible, about unobserved properties for a given data instance $x \in \mathcal{X}$.

In order to measure quality of **prediction** $f: \mathcal{X} \to \mathcal{Y}$ we define a **loss function**

$$\Delta: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_+$$
,

so that $\Delta(y, y')$ measures the cost of predicting y' when the correct label is y.

Let us denote the *model distribution* by $p(y \mid x, w)$ and the *true conditional distribution* by $d(y \mid x)$. The quality of prediction can be expressed by the **expected loss**:

$$\mathcal{R}_f^{\Delta}(x) := \mathbb{E}_{y \sim d(y|x)} [\Delta(y, f(x))]$$
$$= \sum_{y \in \mathcal{Y}} d(y \mid x) \Delta(y, f(x)) \approx \mathbb{E}_{y \sim p(y|x)} [\Delta(y, f(x))],$$

assuming that $p(y \mid x) \approx d(y \mid x)$.

IN2245 - Combinatorial Optimization in Computer Vision

22. Probabilistic parameter learning – 10 / 31

0/1 loss

The loss function is generally application dependent. Arguably the most common loss function for classification tasks is the 0/1 loss, that is

$$\Delta_{0/1}(y,y') = \llbracket y \neq y' \rrbracket = \begin{cases} 0, & \text{if } y = y' \\ 1, & \text{otherwise} \end{cases}$$

Minimizing the expected loss of the 0/1 loss yields

$$\begin{split} y^* &:= \underset{y' \in \mathcal{Y}}{\operatorname{argmin}} \, \mathbb{E}_{y \sim p(y|x)} [\Delta_{0/1}(y,y')] = \underset{y' \in \mathcal{Y}}{\operatorname{argmin}} \, \sum_{y \in \mathcal{Y}} p(y \mid x) \Delta_{0/1}(y,y') \\ &= \underset{y' \in \mathcal{Y}}{\operatorname{argmin}} \, \sum_{y' \neq y \in \mathcal{Y}} p(y \mid x) = \underset{y' \in \mathcal{Y}}{\operatorname{argmin}} \, \left(1 - p(y' \mid x)\right) = \underset{y' \in \mathcal{Y}}{\operatorname{argmax}} \, p(y' \mid x) \\ &= \underset{y' \in \mathcal{Y}}{\operatorname{argmin}} \, E(y',x) \; . \end{split}$$

This shows that the optimal prediction $f(x) = y^*$ in this case is given by MAP inference.

IN2245 - Combinatorial Optimization in Computer Vision

22. Probabilistic parameter learning – 11 / 31

Hamming-loss

Another popular choice of loss function is the Hamming-loss counts the percentage of mislabeled variables:

$$\Delta_H(y, y') = \frac{1}{|\mathcal{V}|} \sum_{i \in \mathcal{V}} \llbracket y_i \neq y_i' \rrbracket.$$

For example, in pixel-wise image segmentation, the Hamming loss is proportional to the number of mis-classified pixels, whereas the 0/1 loss assigns the same cost to every labeling that is not pixel-by-pixel identical to the intended one.

The expected loss of the Hamming loss takes the form (see the exercise)

$$\mathcal{R}_f^{\mathsf{H}} = 1 - \frac{1}{|\mathcal{V}|} p(Y_i = f(x)_i \mid x) ,$$

which is minimized by predicting with $f(x)_i = \operatorname{argmax}_{y_i \in \mathcal{Y}_i} p(Y_i = y_i \mid x)$. To evaluate this prediction rule, we rely on *probabilistic inference*.

IN2245 - Combinatorial Optimization in Computer Vision

22. Probabilistic parameter learning – 12 / 31

Learning tasks

Learning graphical models (from training data) is a way to find among a large class of possible models a single one that is best in some sense for the task at hand.

We assume a fixed underlying graphical model with parameterized conditional probability distribution

$$p(y \mid x, w) = \frac{1}{Z(x, w)} \exp(-E(x, y, w)) = \frac{1}{Z(x, w)} \exp(-\langle w, \varphi(x, y) \rangle),$$

where $Z(x,w) = \sum_{u \in \mathcal{Y}} \exp(-\langle w, \varphi(x,y) \rangle)$. The only unknown quantity is the *parameter vector* w, on which the energy E(x,y,w) depends linearly.

In principle each part of a graphical model (i.e. random variables, factors, and parameters) can be learned. However we assume that the model structure and parameterization are specified manually, and learning amounts to finding a vector of real-valued parameters.

IN2245 - Combinatorial Optimization in Computer Vision

22. Probabilistic parameter learning – 13 / 31

Parameter Learning

Let $d(y \mid x)$ be the (unknown) conditional distribution of labels for a problem to be solved. For a parameterized conditional distribution $p(y \mid x, w)$ with parameters $w \in \mathbb{R}^D$, probabilistic parameter learning is the task of finding a point estimate of the parameter w^* that makes $p(y \mid x, w^*)$ closest to $d(y \mid x)$.

Let d(x,y) be the unknown distribution of data in labels, and let $\Delta: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_+$ be a loss function. Loss minimizing parameter learning is the task of finding a parameter value w^* such that the expected prediction loss

$$\mathbb{E}_{(x,y)\sim d(x,y)}[\Delta(y,f_p(x))]$$

is as small as possible, where $f_p(x) = \operatorname{argmax}_{y \in \mathcal{Y}} p(y \mid x, w^*)$.

IN2245 - Combinatorial Optimization in Computer Vision

22. Probabilistic parameter learning – 14 / 31

Probabilistic parameter learning

We aim at identifying a weight vector w^* that makes $p(y \mid x, w)$ as close to the **true conditional label distribution** $d(y \mid x)$ as possible. The label distribution itself is unknown to us, but we have an *i.i.d.* sample set $\mathcal{D} = \{(x^n, y^n)\}_{n=1,\dots,N}$ from d(x, y) that we can use for learning.

We now define what we mean by "closeness" between conditional distributions $p(y \mid x, w)$ and d(x, y): for any $x \in \mathcal{X}$, we measure the dissimilarity by making use of **Kullback-Leibler (KL) divergence**:

$$\mathsf{KL}(p\|d) = \sum_{y \in \mathcal{Y}} d(y \mid x) \log \frac{d(y \mid x)}{p(y \mid x, w)} .$$

From this we obtain a **total measure** of how much p differs from d by their **expected dissimilarity** over all $x \in \mathcal{X}$:

$$\mathsf{KL}_\mathsf{tot}(p\|d) = \sum_{x \in \mathcal{X}} d(x) \sum_{y \in \mathcal{Y}} d(y \mid x) \log \frac{d(y \mid x)}{p(y \mid x, w)} \; .$$

IN2245 - Combinatorial Optimization in Computer Vision

22. Probabilistic parameter learning – 16 / 31

Probabilistic parameter learning

We choose the parameter w^* that minimizes expected dissimilarity, i.e.

$$w^* = \underset{w \in \mathbb{R}^D}{\operatorname{argmin}} \operatorname{KL}_{\mathsf{tot}}(p \| d) = \underset{w \in \mathbb{R}^D}{\operatorname{argmin}} \sum_{x \in \mathcal{X}} d(x) \sum_{y \in \mathcal{Y}} d(y \mid x) \log \frac{d(y \mid x)}{p(y \mid x, w)}$$
$$= \underset{w \in \mathbb{R}^D}{\operatorname{argmax}} \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} d(y \mid x) d(x) \log p(y \mid x, w)$$
$$= \underset{w \in \mathbb{R}^D}{\operatorname{argmax}} \mathbb{E}_{(x,y) \sim d(x,y)} [\log p(y \mid x, w)] .$$

Unfortunately, we cannot compute this expression directly, because d(x,y) is unknown to us. However, we can approximate it using the sample set \mathcal{D} .

$$\approx \underset{w \in \mathbb{R}^D}{\operatorname{argmax}} \sum_{(x^n, y^n) \in \mathcal{D}} \log p(y^n \mid x^n, w) = \underset{w \in \mathbb{R}^D}{\operatorname{argmax}} \sum_{n=1}^N \log \frac{\exp(-\langle w, \phi(x^n, y^n) \rangle)}{Z(x^n, w)}$$
$$= \underset{w \in \mathbb{R}^D}{\operatorname{argmin}} \sum_{n=1}^N \langle w, \phi(x^n, y^n) \rangle + \sum_{n=1}^N \log Z(x^n, w) .$$

IN2245 - Combinatorial Optimization in Computer Vision

22. Probabilistic parameter learning – 17 / 31

Maximum conditional likelihood

By making use of i.i.d. assumption of the sample set \mathcal{D} , we can write that

$$\begin{aligned} & \underset{w \in \mathbb{R}^D}{\operatorname{argmax}} \, \mathbb{E}_{(x,y) \sim d(x,y)} [\log p(y \mid x, w)] \\ &\approx \underset{w \in \mathbb{R}^D}{\operatorname{argmax}} \, \sum_{(x^n,y^n) \in \mathcal{D}} \log p(y^n \mid x^n, w) \\ &= \underset{w \in \mathbb{R}^D}{\operatorname{argmax}} \, \log \prod_{n=1}^N p(y^n \mid x^n, w) \\ &= \underset{w \in \mathbb{R}^D}{\operatorname{argmax}} \, \prod_{n=1}^N p(y^n \mid x^n, w) \\ &= \underset{w \in \mathbb{R}^D}{\operatorname{argmax}} \, p(y^1, \dots, y^N \mid x^1, \dots, x^N, w) \; . \end{aligned}$$

from which the name maximum conditional likelihood (MCL) stems.

IN2245 - Combinatorial Optimization in Computer Vision

22. Probabilistic parameter learning – 18 / 31

Prior belief on p(w)

When the number of training instances is *small* compared to the number of degrees (D) of freedom in w, then the approximation

$$\operatorname*{argmax}_{w \in \mathbb{R}^D} \mathbb{E}_{(x,y) \sim d(x,y)} [\log p(y \mid x, w)] \approx \operatorname*{argmax}_{w \in \mathbb{R}^D} \sum_{(x^n, y^n) \in \mathcal{D}} \log p(y^n \mid x^n, w)$$

becomes unreliable, and w^* will vary strongly with respect to the training set \mathcal{D} , which means MCL training is prone to overfitting.

To overcome this limitation, we treat w not as a deterministic parameter but as yet another random variable. For any prior distribution p(w) over the space of weight vectors, the posterior probability of w for given observations $\mathcal{D} = \{(x^n, y^n)\}_{n=1,\dots,N}$ is given by (see exercise):

$$p(w \mid \mathcal{D}) = p(w) \prod_{n=1}^{N} \frac{p(y^n \mid x^n, w)}{p(y^n \mid x^n)}.$$

Negative conditional log-likelihood

Assume a prior distribution of p(w), then we can get

$$\begin{split} w^* &= \underset{w \in \mathbb{R}^D}{\operatorname{argmax}} \, p(w \mid \mathcal{D}) = \underset{w \in \mathbb{R}^D}{\operatorname{argmin}} \{ -\log p(w \mid \mathcal{D}) \} \\ &= \underset{w \in \mathbb{R}^D}{\operatorname{argmin}} \, \left\{ -\log \left(p(w) \prod_{n=1}^N \frac{p(y^n \mid x^n, w)}{p(y^n \mid x^n)} \right) \right\} \\ &= \underset{w \in \mathbb{R}^D}{\operatorname{argmin}} \, \left\{ -\log p(w) - \sum_{n=1}^N \log p(y^n \mid x^n, w) + \sum_{n=1}^N \log p(y^n \mid x^n) \right\} \\ &= \underset{w \in \mathbb{R}^D}{\operatorname{argmin}} \, \left\{ -\log p(w) - \sum_{n=1}^N \log p(y^n \mid x^n, w) \right\} \; . \end{split}$$

IN2245 - Combinatorial Optimization in Computer Vision

22. Probabilistic parameter learning – 20 / 31

Regularized conditional log-likelihood

$$w^* = \operatorname*{argmin}_{w \in \mathbb{R}^D} \left\{ -\log p(w) - \sum_{n=1}^N \log p(y^n \mid x^n, w) \right\}$$

Assuming a zero-mean Gaussian prior $p(w) \propto \exp(-\frac{\|w\|^2}{2\sigma^2})$

$$w^* = \underset{w \in \mathbb{R}^D}{\operatorname{argmin}} \left\{ \frac{\|w\|^2}{2\sigma^2} - \sum_{n=1}^N \log p(y^n \mid x^n, w) \right\}$$
$$= \underset{w \in \mathbb{R}^D}{\operatorname{argmin}} \left\{ \lambda \|w\|^2 + \sum_{n=1}^N \langle w, \varphi(x^n, y^n) \rangle + \sum_{n=1}^N \log Z(x^n, w) \right\} ,$$

where $\lambda = \frac{1}{2\sigma^2}$

The parameter λ is generally considered as a free hyper-parameter that determines the regularization strength. Unregularized situation can be seen as the limit case for $\lambda \to 0$.

Regularized Maximum Conditional Likelihood Training

Let $p(y \mid x, w) = \frac{1}{Z(x,w)} \exp(-\langle w, \phi(x,y) \rangle)$ be a **probability distribution parameterized by** $w \in \mathbb{R}^D$, and let $\mathcal{D} = \{(x^n, y^n)\}_{n=1,...,N}$ be a set of **training examples**. For any $\lambda > 0$, regularized maximum conditional likelihood (RMCL) training chooses the parameter as

$$w = \operatorname*{argmin}_{w \in \mathbb{R}^D} \lambda \|w\|^2 + \sum_{n=1}^N \langle w, \phi(x^n, y^n) \rangle + \sum_{n=1}^N \log Z(x^n, w) .$$

For $\lambda = 0$ the simplified rule

$$w = \underset{w \in \mathbb{R}^D}{\operatorname{argmin}} \sum_{n=1}^{N} \langle w, \phi(x^n, y^n) \rangle + \sum_{n=1}^{N} \log Z(x^n, w)$$

results in maximum conditional likelihood (MCL) training.

IN2245 - Combinatorial Optimization in Computer Vision

22. Probabilistic parameter learning – 22 / 31

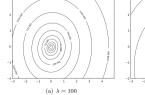
Negative conditional log-likelihood: Toy example

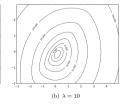
Consider a simple CRF model with a single variable, where $\mathcal{Y} = \{-1, +1\}$. We define the energy function as

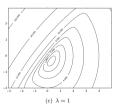
$$E(x, y, w) = w_1 \varphi_1(x, y) + w_2 \varphi_2(x, y)$$
.

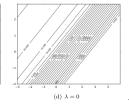
Assuming a training set $\mathcal{D} = \{(-10, +1), (-4, +1), (6, -1), (5, -1)\}$ with

$$\varphi_1(x,y) = \begin{cases} 0, & \text{if } y = -1 \\ x, & \text{if } y = +1 \end{cases} \quad \text{and} \quad \varphi_2(x,y) = \begin{cases} x, & \text{if } y = -1 \\ 0, & \text{if } y = +1 \end{cases}.$$









$$L(w) = \lambda ||w||^2 + \sum_{n=1}^{N} \langle w, \phi(x^n, y^n) \rangle + \sum_{n=1}^{N} \log Z(x^n, w).$$

Steepest Descent Minimization

- 1: $w_{\text{cur}} \leftarrow 0$
- 2: repeat
- 3: $d \leftarrow -\nabla_w L(w_{\text{cur}})$
- 4: $\eta \leftarrow \operatorname{argmin}_{\eta > 0} \mathcal{L}(w_{\mathsf{cur}} + \eta d)$
- 5: $w_{\text{cur}} \leftarrow w_{\text{cur}} + \eta d$
- 6: until $\|d\| < \epsilon$
- 7: **return** w_{cur}

Let us consider the *negative conditional log-likelihood* function

$$L(w) = \lambda ||w||^2 + \sum_{n=1}^{N} \langle w, \phi(x^n, y^n) \rangle + \sum_{n=1}^{N} \log Z(x^n, w) .$$

Obviously, L is C^{∞} -differentiable, i.e. smooth function, on all \mathbb{R}^{D} .

IN2245 - Combinatorial Optimization in Computer Vision

22. Probabilistic parameter learning – 24 / 31

Gradient Based Optimization

The Jacobian vector (cf. Analysis I/II) of L(w) is given by

$$\nabla_{w}L(w) = \nabla_{w} \left(\lambda \|w\|^{2} + \sum_{n=1}^{N} \langle w, \phi(x^{n}, y^{n}) \rangle + \sum_{n=1}^{N} \log Z(x^{n}, w) \right)$$

$$= 2\lambda w + \sum_{n=1}^{N} \left(\phi(x^{n}, y^{n}) + \sum_{y \in \mathcal{Y}} \frac{\exp(-\langle w, \phi(x^{n}, y) \rangle)}{\sum_{y' \in \mathcal{Y}} \exp(-\langle w, \phi(x^{n}, y') \rangle)} (-\phi(x^{n}, y)) \right)$$

$$= 2\lambda w + \sum_{n=1}^{N} \left(\phi(x^{n}, y^{n}) - \sum_{y \in \mathcal{Y}} p(y \mid x^{n}, w) \phi(x^{n}, y) \right)$$

$$= 2\lambda w + \sum_{n=1}^{N} \left(\phi(x^{n}, y^{n}) - \mathbb{E}_{y \sim p(y \mid x^{n}, w)} [\phi(x^{n}, y)] \right).$$

Interpretation: we aim for expectation matching, i.e. $\phi(x^n,y^n)=\mathbb{E}_{y\sim p(y|x^n,w)}[\phi(x^n,y)]$ for x^1,\ldots,x^n .

IN2245 - Combinatorial Optimization in Computer Vision

22. Probabilistic parameter learning – 25 / 31

Hessian of L(w)

By differentiating of $\nabla_w L(w)$, the Hessian matrix (cf. Analysis I/II) of L(w) is given by (see exercise):

$$\Delta_w L(w) = 2\lambda \mathbf{I} + \sum_{n=1}^N \left(\mathbb{E}_{y \sim p(y|x^n, w)} [\varphi(x^n, y) \varphi(x^n, y)^T] \right)$$

$$-\mathbb{E}_{y \sim p(y|x^n, w)}[\varphi(x^n, y)] \mathbb{E}_{y \sim p(y|x^n, w)}[\varphi(x^n, y)]^T$$

Reminder: for any random vector X the covariance Cov(X,X) can be written as:

$$Cov(X, X) \stackrel{\Delta}{=} \mathbb{E}[(X - \mathbb{E}(X))(X - \mathbb{E}(X))^T] = \mathbb{E}[XX^T] - \mathbb{E}[X]\mathbb{E}[X]^T.$$

Note that $\Delta_w L(w)$ is a **covariance matrix**, hence it is *positive semidefinite*. Therefore, L(w) is **convex**, which guarantees that every local minimum will also be a global one minimum of L(w).

IN2245 - Combinatorial Optimization in Computer Vision

22. Probabilistic parameter learning – 26 / 31

Numerical solution

$$\nabla_w L(w) = 2\lambda w + \sum_{n=1}^N \left(\phi(x^n, y^n) - \mathbb{E}_{y \sim p(y|x^n, w)} [\phi(x^n, y)] \right) .$$

In a naive way, computing the gradient takes $\mathcal{O}(K^MND)$.

$$\lambda ||w||^2 + \sum_{n=1}^{N} \langle w, \phi(x^n, y^n) \rangle + \sum_{n=1}^{N} \log Z(x^n, w) .$$

In a naive way, line search takes $\mathcal{O}(K^MND)$ operations per evaluation of L, where

- \blacksquare N is the number of samples,
- lacksquare D is the dimension of feature space,
- lacksquare $M=|\mathcal{V}|$ is number of output nodes, and
- $K = \max_{i \in \mathcal{V}} |\mathcal{Y}_i|$ is (maximal) number of possible labels of each output nodes.

Piecewise learning

Assume a set of factors \mathcal{F} in a graphical model representation of p, such that $\varphi(x,y) = [\varphi_F(x_F,y_F)]_{F \in \mathcal{F}}$.

We now approximate $p(y \mid x, w)$ by a distribution that is a product over the factors:

$$p_{\mathsf{PW}}(y \mid x, w) := \prod_{F \in \mathcal{F}} p(y_F \mid x_F, w_F) = \prod_{F \in \mathcal{F}} \frac{\exp(-\langle w_F, \varphi_F(x_f, y_F) \rangle)}{Z_F(x_F, w_F)}.$$

By minimizing the negative conditional log-likelihood function L(w), we get

$$w^* = \underset{w \in \mathbb{R}^D}{\operatorname{argmin}} L(w) = \underset{w \in \mathbb{R}^D}{\operatorname{argmin}} \lambda \|w\|^2 - \sum_{n=1}^N \log \prod_{F \in \mathcal{F}} p(y_F^n \mid x_F^n, w_F)$$
$$= \underset{w \in \mathbb{R}^D}{\operatorname{argmin}} \sum_{F \in \mathcal{F}} \lambda \|w_F\|^2 + \sum_{n=1}^N \langle w_F, \varphi_F(x_F^n, y_F^n) \rangle + \sum_{n=1}^N \log Z_F(x_F^n, w_F) .$$

IN2245 - Combinatorial Optimization in Computer Vision

22. Probabilistic parameter learning – 28 / 31

Piecewise learning

$$w^* = \operatorname*{argmin}_{w \in \mathbb{R}^D} \sum_{F \in \mathcal{F}} \lambda \|w_F\|^2 + \sum_{n=1}^N \langle w_F, \varphi_F(x_F^n, y_F^n) \rangle + \sum_{n=1}^N \log Z_F(x_F^n, w_F) .$$

Consequently, piecewise training chooses the parameters $w^* = [w_F^*]_{F \in \mathcal{F}}$ as

$$w_F^* = \underset{w_F \in \mathbb{R}}{\operatorname{argmin}} \lambda ||w_F||^2 + \sum_{n=1}^N \langle w_F, \varphi_F(x_F^n, y_F^n) \rangle + \sum_{n=1}^N \log Z_F(x_F^n, w_F) .$$

One can perform gradient-based training for each factor as long as the individual factors remain small.

Comparing $p_{PW}(y \mid x, w)$ with the exact $p(y \mid x, w)$, we see that the exact Z(w) does not factorize into a product of simpler terms, whereas its piecewise approximation $Z_{PW}(w)$ factorizes over the set of factors.

The simplification made by piece-wise training of CRFs resemble two-stage learning.

Two-stage learning

As a special case of *piecewise learning*, the idea here is to split learning of energy functions into two steps:

- 1. learning of unary energies via local classifiers, and
- 2. learning of their importance, pairwise and higher-order energies.

$$E(y;x) = \sum_{i \in \mathcal{V}} E_i(y_i;x_i) + \sum_{(i,j) \in \mathcal{E}'} E_{ij}(y_i,y_j) .$$

As an advantage, it results in a faster learning method. However, if local classifiers for E_i perform badly, then CRF learning cannot fix it.

IN2245 - Combinatorial Optimization in Computer Vision

22. Probabilistic parameter learning – 30 / 31

Literature

Sebastian Nowozin and Christoph H. Lampert. **Structured Prediction and Learning in Computer Vision**. In *Foundations and Trends in Computer Graphics and Vision*, Volume 6, Number 3-4. Note: Chapter 5.

IN2245 - Combinatorial Optimization in Computer Vision

22. Probabilistic parameter learning – 31 / 31