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Parameterization 3/31

Conditional Random Fields revisited

Let us suppose a set of random variables, denoted by {Y;};cy, where V is a set of pixels. Moreover Y; € ); for all i € V, hence ) = X ey Vi- Let us assume
that we have also access to measurements X = z € X' (e.g., X is a set of images).

As we have already discussed (cf. Lecture 4), the conditional probability distribution p(Y =y | X = x), expressed by an underlying conditional random
field (CRF) model, can be directly modeled by a factor graph G = (V, F,€):

1

ply|z) = —— || ¥rlyrizr) @ e
Z(x) FeF

with the partition function depending on =

Z(@) =Y, [ | vrlyrizr). @ @

ye) FeF
Shaded: the observations X = z.
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Conditional Random Fields revisited

£ €V x F, and F encodes the conditional independence assumption.
1
ply|z) = —— || ¥rlyrizr) @ e
Z(:E) FeF
with the partition function depending on z g

Z(@) =Y, [ | vrlyrizr). @ @

ye) FeF
Shaded: The observations X = z.

Note that the potentials become also functions of (part of) z, i.e. ¥ (yr;xr) instead of just ¥ (yr). Nevertheless, x is not part of the probability model,
i.e. it is not treated as random variable.
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Example: Binary image segmentation
Assume that we are given a set of pixels V. Consider the problem of binary image segmentation with a label set L.

We have also defined the energy function

E(y;z) = Z Ep(yr;ar)
FeF

corresponding to a CRF model G = (V, F,€).

p(y | ) is completely determined by E(y;x):

by 1) =55 [ veturson) = s o= X Brtursee)
1
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Example: Binary image segmentation

We are generally interested in a MAP labelling y*:

y* € argmin E(y; x) .
yeLy

Now we assume that F consists of only unary and pairwise factors.

Let &’ encode a local neighborhood of pixels, one can write the energy function as
E(y;z) = Y, Er(yriar)) = Ei(yiiz) + Y, Eij(yi yji w6, x5)

FeF eV (4,5)e&’
=Y Ei(yszi) + Y, Eii(yiy))
iV (irj)eE"

where E;(y;; x;) corresponds to the data term of the pixel i, and E;;(y;,y;; i, ;) = Ei;j(yi,y;) is a smoothness term.
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Parameterization

Instead of
E(y;z)= Y Ei(yiizi) + Y. Ei(yi,v)
ey (i,§)e&’

one may want to apply weighting factors wy,wq € R, :

E(y;z,w) = w1 Y. Bi(yss i) + wa Y Eij(yi y;) = <[wl} ; { Zuiev Eilyi 71)) ]>-

pay! (i)ee" wa | | X jeer Eij Wi v5)

In a more general form, one can write the energy functions as a linear combination for a parameter vector w € R”, D = |F|:

wi Er (yFl;xFl))
E(y;x,w) :< > >:<w790(x7y)>'
wp EFD (yFD;xFD))
e(z,y)
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Parameter learning 9 /31

Loss function
The goal is to make predictions y € YV, as good as possible, about unobserved properties for a given data instance z € X.

In order to measure quality of prediction f : X — ) we define a loss function
A:YxY->R,,

so that A(y,y’) measures the cost of predicting 3’ when the correct label is y.

Let us denote the model distribution by p(y | z,w) and the true conditional distribution by d(y | z). The quality of prediction can be expressed by the
expected loss:

R7 (@) =By [Ay, f(2))]

yey

assuming that p(y | z) ~ d(y | x).
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0/1 loss

The loss function is generally application dependent. Arguably the most common loss function for classification tasks is the 0/1 loss, that is

0, ify=1y

Aon(yy) =ly#y] = {1 otherwise

Minimizing the expected loss of the 0/1 loss yields

y* = argminEy 10 [Ao/1 (. y)] = argmin Y py | 2)A0s(y,y)

y'ey Y'eY ey
. . / !
= argmin Z p(y | x) = argmin (1 —p(y' | x)) = argimaxp(y | )
YEY  yrsyey y'ey y'ey
=argmin E(y/, x) .
y'ey

This shows that the optimal prediction f(x) = y* in this case is given by MAP inference.
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Hamming-loss

Another popular choice of loss function is the Hamming-loss counts the percentage of mislabeled variables:

€V

Au(y,y)

For example, in pixel-wise image segmentation, the Hamming loss is proportional to the number of mis-classified pixels, whereas the 0/1 loss assigns the
same cost to every labeling that is not pixel-by-pixel identical to the intended one.

The expected loss of the Hamming loss takes the form (see the exercise)

1
RY =1 mp(¥i = f(@)i] ),

which is minimized by predicting with f(x); = argmax, .y, p(Y; = y; | ). To evaluate this prediction rule, we rely on probabilistic inference.
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Learning tasks

Learning graphical models (from training data) is a way to find among a large class of possible models a single one that is best in some sense for the task at
hand.

We assume a fixed underlying graphical model with parameterized conditional probability distribution

by | 2.0) = S exp(= Bl .w) = s exp(—w ()

Z(x,w
where Z(z,w) = X, oy exp(—(w, ¢(z,y))). The only unknown quantity is the parameter vector w, on which the energy E(x,y,w) depends linearly.

In principle each part of a graphical model (i.e. random variables, factors, and parameters) can be learned. However we assume that the model structure and
parameterization are specified manually, and learning amounts to finding a vector of real-valued parameters.
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Parameter Learning

Let d(y | =) be the (unknown) conditional distribution of labels for a problem to be solved. For a parameterized conditional distribution p(y | x,w) with
parameters w € R, probabilistic parameter learning is the task of finding a point estimate of the parameter w* that makes p(y | z,w*) closest to

d(y | z).

Let d(x,y) be the unknown distribution of data in labels, and let A : ) x ) — R, be a loss function. Loss minimizing parameter learning is the task of
finding a parameter value w* such that the expected prediction loss

E(x,y)~d(x,y) [A(yv fp(l‘))]

is as small as possible, where f,(z) = argmax, ¢y p(y | =, w*).
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Probabilistic parameter learning

We aim at identifying a weight vector w* that makes p(y | x,w) as close to the true conditional label distribution d(y | z) as possible. The label
distribution itself is unknown to us, but we have an i.i.d. sample set D = {(z",y")}n=1,..~ from d(z,y) that we can use for learning.

We now define what we mean by “closeness” between conditional distributions p(y | z,w) and d(x,y): for any = € X', we measure the dissimilarity by
making use of Kullback-Leibler (KL) divergence:

d T
KL (p|d) = Zdyrxlog%.
yey y )

From this we obtain a total measure of how much p differs from d by their expected dissimilarity over all z € X

d(y | )
Kleot(pld) = > d(@) D] d(y | x)log — -~ .
25 p(y | z,w)
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Probabilistic parameter learning

We choose the parameter w* that minimizes expected dissimilarity, i.e.

: . d(y | =)
w* =argmin KLyt (p|d) = argmin Y d(x) » d(y | z)log ————
weRP o weRP a;( %} p(y ’ Z, w)

—argmax Y. Y d(y | 2)d(x) log ply | 2, w)

weRP TeX yeY

= argmax E(x,y)~d(x,y) [lOg p(y ‘ €T, ’LU)] :

weRP

Unfortunately, we cannot compute this expression directly, because d(z,y) is unknown to us. However, we can approximate it using the sample set D.

exp(—(w, o(z", y")))

N
~ argmax Z logp(y" | 2", w) = argmax Z log

'LUERD (mn7yn)e’[) UJERD n=1 Z(:L‘n7 w)
N N
= argmin Y | (w,¢(z",y")) + Y log Z(z",w) .
weRP n=1 n=1
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Maximum conditional likelihood

By making use of i.i.d. assumption of the sample set D, we can write that
argmaXE(x,y)~d(x,y) [log p(y | :L‘,U))]
weRP

~ argmax Z logp(y" | 2", w)
WERD (gn yn)eD

N
= argmax log H p(y" | 2", w)
weRP n=1

N
—argmax [ [ p(y" | 2", w)

weRP n=1

=argmaxp(y1,...,yN | :zl,...,a:N,w) )
weRDP
from which the name maximum conditional likelihood (MCL) stems.
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Prior belief on p(w)

When the number of training instances is small compared to the number of degrees (D) of freedom in w, then the approximation

argmax (g ) e logply | 2,w)] ~ argmax Y logp(y" | 2", w)

weRP weRP (zm,yn)eD

becomes unreliable, and w* will vary strongly with respect to the training set D, which means MCL training is prone to overfitting.

To overcome this limitation, we treat w not as a deterministic parameter but as yet another random variable. For any prior distribution p(w) over the space
of weight vectors, the posterior probability of w for given observations D = {(z",y")}n=1,... .~ is given by (see exercise):
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Negative conditional log-likelihood

Assume a prior distribution of p(w), then we can get

w* =argmax p(w | D) = argmin{— log p(w | D)}

weRDP weRDP

N
: py" | 2", w)
=argmin< —log | p(w) | | —=———=
weRD { ( Bl ply™ | ")
N N
= argmin { —log p(w) — Y logp(y™ | 2", w) + Y logp(y" | =")
weRDP n=1 n=1
N
= argmin { — log p(w) — Z logp(y" | 2™, w) p .
weRP n=1
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Regularized conditional log-likelihood

N
w*zargmin{—logp Z ogp(y™ | =" w)}

weRP

2
Assuming a zero-mean Gaussian prior p(w)oc exp(—%)

. jwl?

w” = argmin {

weRP

N
S )

N
= argmin {)\w|2 + Z(w oz, y")) + Z logZ(x”,w)} ,

weRD n=1 n=1

1

where \ = 552 -

The parameter A is generally considered as a free hyper-parameter that determines the regularization strength. Unregularized situation can be seen as the
limit case for A — 0.

16



IN2245 - Combinatorial Optimization in Computer Vision 22. Probabilistic parameter learning — 21 / 31

17



Regularized Maximum Conditional Likelihood Training

Let p(y | z,w) = m exp(—(w, ¢(z,y))) be a probability distribution parameterized by w € R”, and let D = {(2",4y")},=1,..n be a set of training

examples. For any A > 0, regularized maximum conditional likelihood (RMCL) training chooses the parameter as

N N
w = argmin A|w|? + Z<w,¢(:r",y")> + Z log Z (2", w) .
weRP n=1 n=1

For A = 0 the simplified rule
N N
w = argmin Z<w, o(z™,y")) + Z log Z (2", w)

weRP 4 n=1

results in maximum conditional likelihood (MCL) training.
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Negative conditional log-likelihood:
Toy example

Consider a simple CRF model with a single variable, where ) = {—1,+1}. We define the energy function as

E(z,y,w) = wip1(x,y) + wap2(z,y) .

Assuming a training set D = {(—10,+1), (-4, +1), (6,—1), (5, —1)} with

(2.1) 0, ify=-1 q (2.1) xz, ify=-1

T,Y) = _ an xT,y) = _ .

Y x, ify=+1 P2y 0, ify=+1

e LT RN LT L) = Al + S w6,y + T log Z(a™, w).

18
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Steepest Descent Minimization

Weyr < 0

repeat
d — —Vy L(weyr)
1 < argmin, .o £(wWeyr + 1d)
Weur <= Weur + Nd

until |d|| <e

return wey,

N s en

Let us consider the negative conditional log-likelihood function

N N
L(w) = Njw|? + Y (w,é(@",y™) + ) log Z (2", w) .

n=1 n=1

Obviously, L is C®-differentiable, i.e. smooth function, on all RP.
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Gradient Based Optimization

The Jacobian vector (cf. Analysis I/11) of L(w) is given by

Interpretation: we aim for expectation matching, i.e. ¢(x

VwL(w) =

N
=2 \w +Z <¢)(
n=1

N
=2\w + Z ((b(x
n=1

N
=2\w + Z (¢(x
n=1

N
Vw<Mw2+§Kw¢@

n=

1

", yn) = IEy~p(y|:ﬁ",w) [¢(xn, y)] for $17

N
)+ Y log Z(a"

n=1

Y))

9y w))

Z exp( <w p(z"

yeY Zy ey eXp <w’ ¢(xn7

— > oy | 2" w)p(z",y)

yey

)

Ey~p(y|x",w) [¢($n, y)]) .

y'))

n

R

(—¢($”,y))>
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Hessian of L(w)
By differentiating of V., L(w), the Hessian matrix (cf. Analysis I/11) of L(w) is given by (see exercise):
N
AwL(w) =2\l + Z (Ey~p(yx",w) [@(xn’y)so(xn’y)T]
n=1
— Eypylen,w) [0 Y Eymp(ylan w) o (2", y)]T> :
Reminder: for any random vector X the covariance Cov(X, X) can be written as:

Cov(X,X) 2 E[(X - E(X))(X — E(X))] = E[XXT] - E[X]|E[X]" .

Note that A, L(w) is a covariance matrix, hence it is positive semidefinite. Therefore, L(w) is convex, which guarantees that every local minimum will

also be a global one minimum of L(w).
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Numerical solution

N
va(w) =2 \w + Z ((b(xn’yn) - IEy~1o(y\ac”,w) [¢($n7y)]) .
n=1

In a naive way, computing the gradient takes O(K™ N D).

N N
Mawl? + ) (w, ¢, y™) + > log Z(z",w) .
n=1 n=1

In a naive way, line search takes O(K* N D) operations per evaluation of L, where

B N is the number of samples,

D is the dimension of feature space,

M = |V| is number of output nodes, and

K = max;ey || is (maximal) number of possible labels of each output nodes.

22
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Piecewise learning
Assume a set of factors F in a graphical model representation of p, such that ¢(x,y) = [¢r(zF, yr)]Fer.

We now approximate p(y | «,w) by a distribution that is a product over the factors:

exp(—(wr, or (T, Yr)))
Zp(zp,wr) '

pew(y | z,w) == | [ plyr | 2p,wr) = [ ]

FeF FeF

By minimizing the negative conditional log-likelihood function L(w), we get

N
w* = argmin L(w) = argmin \|w|? — Z log H p(yp | 2%, wr)
n=1

weRP weRP FeF
N N
= argmin Z Mwp|? + Z<wp,g0F(a:%,y$)> + Z log Zp (2%, wr) .
weRP per n=1 n=1
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Piecewise learning
N N
w* = argmin Z Mwr|? + Z<wp,gop(z7},y?;)> + Z log Zp(x'%, wr) .
weRP  pcr n=1 n=1
Consequently, piecewise training chooses the parameters w* = [w}:|per as
N N
wh = argmin Mwp|? + 3 wp, or(@p,y2) + . log Zp (@, wp) .
wreR n=1 n=1

One can perform gradient-based training for each factor as long as the individual factors remain small.

Comparing ppw(y | x,w) with the exact p(y | z,w), we see that the exact Z(w) does not factorize into a product of simpler terms, whereas its piecewise
approximation Zpw (w) factorizes over the set of factors.

The simplification made by piece-wise training of CRFs resemble two-stage learning.

24
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Two-stage learning

As a special case of piecewise learning, the idea here is to split learning of energy functions into two steps:

1. learning of unary energies via local classifiers, and
2. learning of their importance, pairwise and higher-order energies.

E(y;x) = ). Eiyss ) + Z Eij(yiyj) -

i€y (4,7)€&’

As an advantage, it results in a faster learning method. However, if local classifiers for E; perform badly, then CRF learning cannot fix it.
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