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Parameter learning

Learning graphical models (from training data) is a way to find among a large class of possible models a single one that is best in some sense for the task at
hand.

We assume a fixed underlying graphical model with parameterized conditional probability distribution

1 1
Z(a:,w) exp(—E(x,y,w)) = Z(:z,w)

exp(—<w, (p(.%‘, y)>) )

ply | z,w) =

where Z(z,w) = ¥, oy, exp(—(w, ¢(z,y))). The only unknown quantity is the parameter vector w, on which the energy E(z,y,w) depends linearly.

IN2245 - Combinatorial Optimization in Computer Vision 23. Loss minimizing parameter learning — 4 / 31

Learning tasks

Let d(y | «) be the (unknown) conditional distribution of labels for a problem to be solved. For a parameterized conditional distribution p(y | x,w) with
parameters w € R, probabilistic parameter learning is the task of finding a point estimate of the parameter w* that minimizes the expected
dissimilarity of p(y | z,w*) and d(y | z):

KLeoe(pld) = 3. d(x) Y. d(y | 2)log _dy =)

zeX yey p(y |z, w)

Let d(x,y) be the unknown distribution of data in labels, and let A : ) x ) — R be a loss function. Loss minimizing parameter learning is the task of
finding a parameter value w* such that the expected prediction loss

B y)~d(ay) [AWY, fp(2))]

is as small as possible, where f,(x) = argmax,cy p(y | =, w*).
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Regularized Maximum Conditional Likelihood Training

Let p(y | z,w) = m exp(—(w, ¢(x,y))) be a probability distribution parameterized by w € R”, and let D = {(2"™,y")}n=1...n be a set of i.i.d. training
examples. For any A > 0, regularized maximum conditional likelihood training chooses the parameter as

N N
w = argmin L(w) = argmin \|w|? + Z<w,<,o(a:”,y”)> + Z log Z (2", w) .

weRP weRP n=1 n=1

For A = 0 the simplified rule is given by

N N
w = argmin Z<w, o™, y")) + Z log Z (2", w) .
weRP 75 n=1

IN2245 - Combinatorial Optimization in Computer Vision 23. Loss minimizing parameter learning — 7 / 31

Numerical solution

N
VwL(w) = 2 \w + Z (@(m",yn) — Eyp(ylzn,w) [gp(:z",y)]) .
n=1
In a naive way, the complexity of the gradient computation is O(K™ N D).

N N
Auwl? + 3w, @,y + 3 log Z(a",w)
n=1

n=1
In a naive way, the complexity of a line search is O(K* N D) (for each evaluation of L), where

B N is the number of samples,

B D is the dimension of weight vector,

B M = |V| is number of output nodes, and

B K = maxey |Y;i| is (maximal) number of possible labels of each output nodes.
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Stochastic gradient descent

If the training set D is too large, one can create a random subset D’ D and estimate the gradient V,,L(w) on D’. In an extreme case, one may randomly
select only one sample and calculate the gradient

?gnﬂn)[/(w) =2 \w + 90(1'”7 yn) - Ey~p(y\x",w)[(p(xn7 y)] .

This approach is called stochastic gradient descent (SGD). Note that line search is not possible, therefore, we need for an extra parameter, referred to as
step-size 7, for each iteration.
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Stochastic gradient descent

Input: Step-sizes 71, ...,nr for all the T iterations.
Output: The learned weight vector w € RP.

1. w0

2. fort=1,...,7T do

3: (x™,y™) < randomly chosen training example pair
4 de -V L(w)

5: w «— w + ned

6: end for

7: return w

If the step-size is chosen correctly (e.g., m; = %) then SGD converges to argmin, .zp L(w). However, it needs more iterations, but each one is much faster.
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Using of the output structure

Assume the set of factors F in a graphical model representation, such that ¢(z,y) decomposes as ¢(z,y) = [¢r(xF,yr)|rer. Thus

Ey~p(y|x,w)[<p(xv y)] :[Ey~p(y|x,w)[<pF (‘/I:Fv yF)]]FE}—

= [EyF~p(yF\xp,w) [SOF (va yF)]]Fe]—‘ )

where
Eypmp(ypiorwler@mye)l = Y plyr | zp,w)pr(zr,yr).
YFEVF
Factor marginals ur = p(yr | xp,w) are generally (much) easier to calculate than the complete joint distribution p(y | , w).

They can be either computed exactly (e.g., by applying Belief propagation yielding O(K2M N D)) or approximated. In general, the approximation yields
O(KFmaxI MIN D), where |Fpax| is the maximal factor size.
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Gradient approximation via sampling

N
va(w) =2 \w + Z ((p(xn’yn) - Ey~p(y\x",w) [(p(xn7y)]) .
n=1

We have seen that the computationally demanding part in the gradient computation has the form of the expectation of ¢(x,y) with respect to the
distribution p(y | z, w).

If we have a method to obtain i.i.d samples {y1), ..., y)} from this distribution, we can form an estimator

0l

S
Eypylanw)[p(z",y)] ~ Z o™,y D).
i=1

Inserting this into VL, the law of large numbers guarantees convergence of the approximation to the exact gradient. Consequently, any procedure to
sample from p(y | 2™, w) for n = 1,..., N provides us with a tool for estimating V,, L.
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Basic sampling

Let Z be a uniformly distributed random variable on the interval [0, 1] and h(y) be a continuous and strictly monotonic cumulative distributive function.
Then :
Y =hY(2)

is a random variable with cumulative distributive function (cdf.) h(y),
where h=1(y) is the inverse of h(y).

The cdf. of the uniformly distributed Z is given by

0, ifz2<0
F(z) =42z if0<z<1
1, ifl<z

Therefore, the cdf. of Y is given by P(Y <y) = P(hil(Z) <) = P(Z < h(y)) = F(hy)) = h(y) .
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Rejection sampling *
Suppose we wish to sample from a distribution p(z) that can be a relatively complex distributions, and that sampling directly from p(z) is difficult.

Furthermore suppose that we are easily able to evaluate p(z) for any
given value of z, up to some normalizing constant Z, so that

p(z) = - (2)

Zp

where p(z) can readily be evaluated, but Z, is unknown.

We need some simpler distribution ¢(z), called a proposal distribution, from which we can readily draw samples. Let k a constant such that kq(z) > p(2)
for all values of z.
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Rejection sampling *

1. Generate a sample zg from the distribution ¢(z).
2. Generate a sample uy ~ U(0, kq(20p)).

This pair of random samples has uniform distribution under the curve of
the function kq(z).

If ug > p(z0) then the sample is rejected, otherwise ug is retained. Note that the remaining pairs then have uniform distribution under the curve of p(z).

The values of z are generated from ¢(z), and these samples are accepted with probability p(z)/kq(z), therefore

p(accept) = J ]fq((zz)q(z)dz = %fﬁ(z)dz .
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Metropolis-Hasting algorithm *

Input: p(y | z,w)cp(y | x,w), unnormalized target distribution and ¢(y’ | y), proposal distribution
Output: y*), sequence of samples with approximately 3 ~ p(y | z,w)

1: 49 < arbitrary in )

2. fort=1,...,T do

3 y® ~ gy | yt) = Generate candidate
. =00 (t=1) |,/
4: 0 < min (1, ﬁ(g((ﬂ%"?zgz(y,|y<|§’7)1>)) > Compute accept. prob.
6 o Yy’ with probability o (accept) = Update
' yD)  otherwise (reject)
6: output )
7: end for
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Loss-minimizing parameter learning

Let D = {(z',9'),..., (", y")} be i.id. samples from the (unknown) true data distribution d(z,y) and A : ) x Y — R be a loss function. The task is
to find a weight vector w that leads to minimal expected loss

E(:c,y)~d(:c,y) [A(y7 f(x))]

for a prediction function f(z) = argmax,cy g(z,y;w), where g : X x ) — R is an auxiliary function that is parameterized by w € RP.

Pros:

B We directly optimize for the quantity of interest, i.e. the expected loss.
B We do not need to compute the partition function Z.

Cons:

B There is no probabilistic reasoning to find w.
B We need to know the loss function already at training time.
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Regularized loss minimization

Let us define the auxiliary function g(z,y;w) := —{(w, p(z,y)). We aim to find the parameter w* that minimizes

E(2,9)~d(z,y) [A(y, argmax g(x, y; w))] -
yey

However, d(x,y) is unknown, hence we apply approximation:

N
1
E(z,y)~d(z,y) [A(y, argmax g(z, y; w))] ~ N Z A(y", argmax g(z",y"; w)) .
yey n=1 yey

Moreover, we add the regularizer \|wl|? in order to avoid overfitting.

Therefore, we get a new objective, that is
N

1
w* € argmin A|w|? + — Z A(y",argmax g(z", y"; w)) .
N Y

weRP n=1 S
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Redefining the loss function

N
w* € argmin A|w|? + — Z Ay" argmaxg( moytiw)) .
weRP n 1

Note that the loss function A(y,argmax,cy, g(x,y;w)) is piecewise constant, hence it is discontinuous, hence we cannot use gradient-based techniques.
As a remedy we will replace A(y,y’) with well behaved ¢(z, y; w), i.e. it is continuous and convex with respect to w.

Typically, £ is chosen such that it is an upper bound to A. Basically, by making use of £ instead of A, it is still possible to achieve an optimal prediction
accuracy in the limit of infinite data.

Therefore, we get a new objective, that is

w* € argmin A|w|? + Z€ 2"yt w)

weRP
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Hinge loss

The hinge loss is defined as

n n A n n n n
", y",w) =r;16ay><(A(y y) g™, y;w) — g(a", Y™ w))

=max(Ay",y) + w, p(@",y)) = (w, @(2",y7))) -
£ is continuous and convex, since it is a maximum over linear functions.
The hinge loss { provides an upper bound for the loss function A. To see this, let § = argmax,cy g(z", y; w), then
A(y",y) <AW" 9) + 9", gw) — g(@", y"; w)
<max(Ay",y) +g(a", y;w) — 9",y w))
ye

=L(z",y", w) .
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Structured Support Vector Machine

Let g(x,y;w) = (w, p(z,y)) be an auxiliary function parameterized by w € RP. For any C > 0, structured support vector machine (S-SVM) training
chooses the parameter
N

w* e argmln —HwH2 + ¢ Z 0(x", y", w)
n 1
with
L™,y w) = rggg(A(y”, y) +<{w,p(@",y)) —w, o(z",y"))) .

Both CRF and S-SVM do regularized risk minimization. For CRF models, the regularized conditional log-likelihood function can be written as:

w* e argmln u + Z log Z exp ((w, (2", y)) — (w, p(z",y"))) .

n=1 yey
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S-SVM: Toy example *
Consider a simple CRF model with a single variable, where )) = {—1,+1}. We define the energy function as
E(z,y,w) = wipi(z,y) + wapa(z,y) -

Assuming a training set D = {(—10,+1), (-4, +1),(6,—1), (5, —1)} with

(2.1) 0, ify=-1 q (2.1) xz, ify=-1
T,yY) = an T,Y) = _ .
Py xz, ify=+1 2y 0, ify=+1

(a) C=0.01 (b) C =0.10 (c) C =1.00

slwl? + § Xns) maxyey(Ay™, y) + (w, p(@",y)) — w, (", y")).

12



IN2245 - Combinatorial Optimization in Computer Vision 23. Loss minimizing parameter learning — 23 / 31

13



Subgradient

Let f: RP — R be a convex, not necessarily differentiable, function. A vector v € R” is called a subgradient of f at wy, if

f(w) = f(wo) + {v,w —wg) forall w.

f(wo)+ (v, w-wWo)

Note that for differentiable f, the gradient v = V f(wyp) is the only subgradient.
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Subgradient descent minimization

Subgradient descent methods work basically like gradient descent ones.

Input: Tolerance € > 0 and step-sizes 7.
Output: The minimizer w of F.
w0
repeat
ve VP F(w)
W — W — MU
until F' changed less than ¢
return w

IS A L

Converges to global minimum, but rather inefficient if the objective function F' is non-differentiable.

14
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Numerical solution
1 c X

argmin = [w|® + = > max(A(y", y) + (w, p(a",y)) — (w, p(z",y"))) .
2 N el yey

weRDP

As we have discussed, this function is non-differentiable. Therefore, we cannot use gradient descent directly, so we have to use subgradients.

£(w)

For each y € ), £ is a linear function, since it is the maximum over all y € ). In order to calculate the subgradient at wyp, one may find the maximal (active)
y, and then use v = V/{(wy).

IN2245 - Combinatorial Optimization in Computer Vision 23. Loss minimizing parameter learning — 26 / 31

Calculating the subgradient

: 1 2 C 4 n n n ,n

weR n=1

Let § € argmax ey A(y", y) + (w, p(z",y)).
A subgradient v is given by

y/sub 1““’“2 4 g i max(A(y",y) + {w, o(z",y)) — (w, p(a", y")))
w N yey ’ ’ 7 7 ’

1, C, _— non
3 Vu | Sl + 5 DAY ) + w,p(z",§)) — (w,p(z",y™)))
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Subgradient descent S-SVM learning

Input: Training set D = {(x!,9"),..., (@, y™V)}, energies ©(x,7), loss function A(y,y’), regularizer C' and step-sizes 71, ..., nr for all the T iterations.
Output: the weight vector w for the prediction function f(z) = argmax,cy,(w, ¢(z,y)).
1. w0

2. fort=1,...,7T do

3 forn=1,...,N do
4 § < argmax,cy A(y",y) + (w, p(z",y))
5 V" = p(a",g) — p(a", y")

6: end for

7: w<—w—nt<w+%zgzlv”)

8: end for

The step-size can be chosen as 7, = % forallt=1,...,T.

Note that each update of w needs only one argmax-prediction.
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Stochastic subgradient descent S-SVM learning

Input: Training set D = {(x!,9"),..., (@V,y"V)}, energies ©(x,v), loss function A(y,y’), regularizer C' and step-sizes 71, ..., nr for all the T iterations.
Output: The weight vector w for the prediction function f(z) = argmax,cy,(w, p(z,y)).
1. w0
2. fort=1,...,T do
3 (x™,y™) < randomly chosen training example pair
4: Y argmax,cy A(y",y) + (w, p(z", y)>
5 wew-n (w0t § I (00" 9) - el y")
6: end for

Note that each update step of w needs only one argmax-prediction, however we will generally need many iterations until convergence.
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Summary of S-SVM learning
We are given a training set D = {(z',y'),..., (2", yN)} = X x Y and a problem specific loss function A : Y x Y « R.

The task is to learn parameter w for prediction function

f(z) = argmax{w, ¢(z,y))
yey

that minimizes expected loss on test data.

S-SVM solution derived by maximum margin framework:

(w, p(z™,y")) = AY", y) + {w, (2", y))
that is the correct output is enforced to be better than others by a margin.

We have seen that S-SVM learning ends up a convex optimization problem, but it is non-differentiable. Furthermore it requires repeated argmax prediction.
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Literature *

B Sebastian Nowozin and Christoph H. Lampert. Structured Prediction and Learning in Computer Vision. In Foundations and Trends in Computer
Graphics and Vision, Volume 6, Number 3-4. Note: Chapter 5, 6.
B Christopher Bishop. Pattern Recognition and Machine Learning. Springer, 2006. Note: Chapter 11.

IN2245 - Combinatorial Optimization in Computer Vision 23. Loss minimizing parameter learning — 31 / 31

19



	23. Loss minimizing parameter learning
	Parameter learning
	Parameter learning
	Learning tasks

	Probabilistic parameter learning
	Regularized Maximum Conditional Likelihood Training
	Numerical solution
	Stochastic gradient descent
	Stochastic gradient descent
	Using of the output structure
	Gradient approximation via sampling
	Basic sampling
	Rejection sampling 
	Rejection sampling 
	Metropolis-Hasting algorithm 

	Loss-minimizing parameter learning
	Loss-minimizing parameter learning
	Regularized loss minimization
	Redefining the loss function
	Hinge loss
	Structured Support Vector Machine
	S-SVM: Toy example 
	Subgradient
	Subgradient descent minimization
	Numerical solution
	Calculating the subgradient
	Subgradient descent S-SVM learning
	Stochastic subgradient descent S-SVM learning
	Summary of S-SVM learning
	Literature 


