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Markov Random Fields 4 /29

Graphical models

Probabilistic graphical models encode a joint p(z,y) or conditional p(y | =) probability distribution such that given some observations we are provided
with a full probability distribution over all feasible solutions.

The graphical models allow us to encode relationships between a set of random variables using a concise language, by means of a graph. Suppose a graph
such that for each node a random variable is assigned. The random variables satisfy conditional independence assumptions encoded in the graph.

Popular classes of graphical models:

B Undirected graphical models (e.g., Markov random fields)
B Directed graphical models (e.g., Bayesian networks)
W Factor graphs
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Markov Random Fields

An undirected graphical model G = (V,€) is called Markov Random Field (MRF) if a variable is conditionally independent of all other variables given its
neighbors. In other words, for any node Y; in the graph, the local Markov property holds:

p(Yi | Yingy) = p(Yi | Yn (i),

where N (i) are the neighbors of node i in the graph.

A probability distribution p(Y) on an undirected graphical model G = (V, ) is called Gibbs distribution if it can be factorized~iato potential functions
Yo (ye) > 0 defined on set of cliques C(G) that cover all nodes and edges of G

H volyo), where Z=>" T[] volye)

CeC (@) yeY CeC(Q)
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Hammersley-Clifford theorem
Let G = (V, &) be an undirected graphical model. The Hammersley-Clifford theorem tells us that the following are equivalent:

B G is an MRF model
B The joint probability distribution P(Y") on G has Gibbs-distribution.

An MREF defines a family of joint probability distributions by means of an undirected graph G = (V,€), £ € V x V (there are no self-edges), where the
graph encodes conditional independence assumptions between the random variables corresponding to V.

Since, the potential functions 1.(y.) > 0

Ve(ye) = exp(—Ec(ye)) < Ee(ye) = —log((¥e(ye))) -
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Inference

Inference means the procedure to estimate the probability distribution, encoded by the graphical model, for a given data (or observation).

Maximum A Posteriori (MAP) inference: Given a factor graph and the observation z, find the state y* € ) of maximum probability,

y* = argmaxp(Y =y | ) = argmin E(y; z) .
yey yey

Probabilistic inference: Given a factor graph and the observation z, find the value of the log partition function and the marginal distributions for each
factor,

log Z(x) = log ) exp(—E(y;x)) ,
yey

pr(yr) =p(Yr =yp |z) VYF e F,VyreVr.

Both inference problems are known to be NP-hard for general graphs.
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Parameter learning

Learning graphical models (from training data) is a way to find among a large class of possible models a single one that is best in some sense for the task at
hand.

We assume a fixed underlying graphical model with parameterized conditional probability distribution

o | 2.0) = s exp(= B,y 0) = 50 esp(—wpla ).

Z(z,w)

where Z(z,w) = X, oy exp(—(w, ¢(z,y))). The only unknown quantity is the parameter vector w, on which the energy E(x,y,w) depends linearly.
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Learning tasks

Let d(y | «) be the (unknown) conditional distribution of labels for a problem to be solved. For a parameterized conditional distribution p(y | x,w) with
parameters w € R”, probabilistic parameter learning is the task of finding a point estimate of the parameter w* that minimizes the expected
dissimilarity of p(y | z,w*) and d(y | z):

d(y | )
ply |z, w) -

KLt (pld) = > d(z) ). d(y | ) log

reX yey

Let d(x,y) be the unknown distribution of data in labels, and let A : ) x ) — R, be a loss function. Loss minimizing parameter learning is the task of
finding a parameter value w* such that the expected prediction loss

E(x,y)~d(x,y) [A(yv fp(l‘))]

is as small as possible, where f,(z) = argmax, ey p(y | =, w").
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Pseudo-Boolean Optimization

A pseudo-Boolean function E : 2 — R assigns to every subset A —  a real value E(A).

Most Computer Vision problems can be cast as the minimization of a pseudo-Boolean function E : 2% — R.

We are interested in the global minimum minscq E(A) and in one of its global minimizers A € argmin E.

If the computation of a global minimizer is NP-hard, we are also satisfied with an approximation. A set S — ) is called an (1 + €)-approximation of
argmin F, if the following holds

B(S) < (1+¢) - min £(4) .
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Submodularity and Supermodularity

A pseudo-Boolean function E : 2 — R is called modular / submodular / supermodular if

E(AUB)+ E(AnB) < E(A) + E(B) (forall A,Be2%).

VoA

Minimizing an arbitrary submodular functions can be done in polynomial time. The minimization of supermodular functions is NP-hard.
Iff £:2% S Risa supermodular function, then —F is submodular.

If H:R — R is a concave function, then Eg : 2 — R is submodular with Ex(A) := H(|A]).

IN2245 - Combinatorial Optimization in Computer Vision 25. Summary — 13 / 29

Submodularity w.r.t. two variables

Let E: 22 — R be submodular and let S € 2 and i, € Q\S. Then

E(S+{i,j}) + E(S) < E(S+ {i}) + E(S + {j}) .

If we define B2 : B x B — R via Ea(by,b2) := E(S + b1 - {i} + b2 - {j}), one can write

E2(1’ 1) + EZ(O’O) < EZ(LO) + EZ(Ov 1) :
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Submodularity of MinCut
Let G = (V,&,¢,s,t) be a network, Vj := V\{s,t} and

E:P(Vh) >R, A~ Cut(Au{s},V,\Au{t}).

Then E is submodular iff c¢(e) > 0 for all e € £.

Let G = (V,&,¢,s,t) be a network. Then

FI - i Cut(S,7T) .
fIiIsl%}cfw OW(f) (S,T)rirsusn—t cut ! ( )

Every graph cut problem can be represented as a submodular energy that uses cliques of size 2 or smaller. The opposite is also true: If

E(.’L‘) =C+ Z Cix; + Z Cij.’L‘i.’L‘j

1€Q 1,7€Q

is submodular, the minimization of E can be cast as a graph cut problem.
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Binary image segmentation

Given Image Minimizing Data Term  Minimizing Data + Length Term

argmin F(A) = argmin Z f(@) + length(A) .
AcQ) AcQ oA
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Quadratic Pseudo-Boolean Optimization (QPBO)

We assume the case of quadratic pseudo-Boolean energies

n n
E(l‘) =Cy+ Z Cix; + Z Cijxi:):j .
i=1 i,j=1
C;j < 0 refer to submodular terms and Cj; > 0 to supermodular terms.
Let us define the sets N := {(i,5) € {1,...,n}? | C;; < 0} and P := {(i,5) € {1,...,n}?* | C;; > 0}. We know that E is submodular (supermodular) iff
[P =0 (|N|=0).
For submodular functions

E(ZL‘) =Cp + Z Cixi + Z Cij:L‘ifL‘j
i1 (i,j)eN

the optimization problem can be cast as a MaxFlow problem that can be solved efficiently.
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Roof duality

The idea of the QPBO is to reformulate the minimization problem as an ILP and to find an approximative solution. Since QPBO is NP hard, we cannot
expect to find the minimal energy. Instead we compute a lower bound of the minimum energy.

Let
Co + Z?:l Cixi+

R(E) = i jep Cijhijla + ;= 1]+ |\ € [0,1]
2 jen CijlAijzi + (1= Aij)a;]

We can define a lower bound for mincg» F(x)

M(E) = i < mi = min E(x) .
()= o, el /) < o sy /0 = i PO

This lower value is called the roof dual of E.
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Belief propagation on trees

For tree-structured factor graphs there always exist at least one such message that can be computed initially, hence all the dependencies can be resolved.

1. Select one variable node as root of the tree (e.g., Yy;,)
2. Compute leaf-to-root messages (e.g., by applying depth-first-search)
3. Compute root-to-leaf messages (reverse order as before)
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Message passing in cyclic graphs

When the graph has cycles, then there is no well-defined leaf—to—root order. However, one can apply message passing on cyclic graphs, which results in

loopy belief propagation.

O S == =0
C.T D.T E.T
\l<—F—>r\l<—G—>rl
Oy —a—()—a—(»)
HIT IIT JlT
St
N o A
@ () —a—(Y
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2. Pass factor—to—variables and variables—to—factor messages alternately until convergence
3. Upon convergence, treat beliefs i as approximate marginals
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Naive mean field

Assume we are given an intractable distribution p(y | ). We consider an approximate distribution ¢(y), which is tractable, for p(y | z).
Take a set () as the set of all distributions in the form:
q(y) = qu‘(yz‘) :

eV

T ql T q2 T q3
For example, in case of the following factor graph: T . T . T ”
4 5 6
q7 qs q9

Original factor graph Mean field approximation
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Move making approaches

Since graph cuts will always compute the global energy of a submodular energy, one might be interested in formulating a binary submodular sub-problem
that can be solved with graph cut.

Such an approach combines the main idea of mean field optimization, i.e. local improvements with the insight that graph cut optimization can change the
label of multiple variables at the same time.

We discussed the following three different approaches

B a-expansion allows each variable to either keep its current label or to change it to the label o € L. As a result, the region of o expands.
B o — (3-swap only changes those pixels that are labeled ¢ € {«, 3}. Each of these variables can choose between « and (.
B Fusion Move starts with two different labelings x,y € L™. Each variable chooses then for itself either the label from z or y. Both, a-expansion and

o« — [B-swap can be seen as special cases of the fusion move.
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Primal-dual schema

Typically, primal-dual e-approximation algorithms construct a sequence (Xk,yk)k=17m7t of primal and dual solutions until the elements x’, y* of the last pair
are both feasible and satisfy the relaxed primal complementary slackness conditions, hence the condition {c,x) < e(b,y) will be also fulfilled.
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Image segmentation

Binary image segmentation
Interactive segmentation
Multi-object segmentation
Medical image segmentation
Semantic segmentation
Video segmentation
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Stereo matching

Left Image Right Image

x,' ,

Ground Truth
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Optical flow

.8

Image Ip: Q — R?® Image I: Q — R3 Flow v: Q — R?

Given two images Iy and I; of a video, we would like to detect the movements between these two images.
In other words, we are interested in a mapping v :  — R? such that I; ~ Ir(x + v(x)). The vector field v is called the optical flow.

If we quantize R?, we obtain a finite label space and the optical flow v can be understood as a multilabeling of 2.
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Other applications

Human pose estimation
Image denoising
Multi-camera reconstruction
Object detection
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Computer Vision

We are always looking for master and bachelor students!

I

R

3D Reconstruction Optical Flow

Shape Analysis Robot Vision

J“ Y
-“f_é‘.

o

RGB-D Vision Image Segmentation Convex Relaxation Visual SLAM

Please fill out the application form: https://vision.in.tum.de/application
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