
GPU Programming in Computer Vision: Day 2

Date: Wednesday, 16. March 2016

Exercise 6: Convolution (continued) (11P)

In exercise 6 of sheet 1 you have implemented the convolution Gσ ∗u using global memory for
u, and global memory for the kernel k := Gσ.

1. Finish exercise 6.

Implement the convolution Gσ ∗ u on the GPU, now using:

2. Shared memory for the image u, but still global memory for k. To solve this task, use
shared memory in the following way:

(a) To compute the convolution in an output pixel (x, y) one needs values of the input
image in (x, y) and also in the neighboring pixels. For each kernel block, load into
shared memory all input image values needed to compute the convolution in every
pixel of this block. Note that overall there are more input image values to load
than the size of the block, see Figure 1 on the next page. Set the size of the shared
memory array accordingly.

(b) When loading into shared memory, make the read accesses to global memory as
coaleasced as possible (for instance, wherever possible, neighboring threads should
access neighboring memory regions).

(c) At image borders, use clamping.

(d) Don’t forget to use syncthreads() after you’ve finished loading the data into
shared memory.

(e) The actual computation of the convolution may only use data from the shared
memory (no global memory accesses allowed).

(f) Use dynamic allocation of shared memory. Make sure you allocate exactly the right
amount of shared memory for your kernel, and not more than needed.

(g) For multi-channel images, apply the above procedure in a loop (within the kernel)
separately for each channel. When you start processing each new channel, also
synchronize before you begin writing to the shared memory.

3. Texture memory for the image u, but still global memory for k.

Since we work with multi-channel images, but CUDA textures allow only one channel,
define the texture as having width w and height h · nc. Here we use the fact that
the channels are arranged in memory one after another. Therefore we can view a
multi-channel image u as an nc-times larger grayscale image u1, defined by u(x, y, c) =
u1(x, y + h · c).

4. Pick some memory variant for the input image u (global, shared, or texture), and use
constant memory for the kernel k. To define the CUDA constant kernel array, assume
a maximal kernel radius rmax = 20.

1



5. For some fixed σ > 0, compare the run times for the different memory versions. Which
combination is the fastest? How much faster is it compared to the CPU version?

Figure 1: Shared memory array for convolution

Exercise 7: Structure Tensor (5P)

For an input image u, the smoothed version is defined as S := Gσ ∗ u. The structure tensor
T of u is defined at each pixel (x, y) as the smoothing

T := Gσ ∗M

of the matrix

M := ∇S · ∇S> =

(
(∂xS)2 (∂xS)(∂yS)

(∂xS)(∂yS) (∂yS)2

)
,

where σ > 0 is a scale parameter. The entries of M are scalar products over the nc channels:

(
(∂xS)2

)
(x, y) :=

nc∑
c=1

(∂xSc)(x, y)2,
(
(∂yS)2

)
(x, y) :=

nc∑
c=1

(∂ySc)(x, y)2,

and (
(∂xS)(∂yS)

)
(x, y) :=

nc∑
c=1

(∂xSc)(x, y) · (∂ySc)(x, y).

Compute the structure tensor. Reuse your kernels for the convolution, don’t write new kernels
for this. You can use just the global memory for everything for convenience.

Implement this in several steps:

1. Compute S = Gσ ∗ u.

2. Compute v1 := ∂xS and v2 := ∂yS using the more rotationally symmetric derivative
discretizations ∂rx, ∂

r
y as given in the lecture. Note that v1, v2 and S each have nc

channels.

3. Compute the matrix M at each pixel. The output should consist of three grayscale
images m11,m12,m22, corresponding to the three independent components of M at
each pixel.

2



4. Compute T = Gσ ∗M by convolving the three grayscale images m11,m12,m22.

5. Visualize the grayscale images m11, m12 and m22. For this, you will need to define three
new output images in the code framework.
Hint: You will need to scale up these images, otherwise they will appear too dark
because m11,m12,m22 are usually very small. To multiply an OpenCV cv::Mat image
m by a scalar factor f, use m *= f;

3


