
Computer Vision Group
Prof. Daniel Cremers

4a. Inference in !
Graphical Models

PD Dr. Rudolph Triebel!
Computer Vision Group

Machine Learning for
Computer Vision

Inference on a Chain (Rep.)

¥ The Þrst values of µ! and µ" are:

¥ The partition function can be computed at any node:

¥ Overall, we have O(NK2) operations to compute the
marginal

2

PD Dr. Rudolph Triebel!
Computer Vision Group

Machine Learning for
Computer Vision

More General Graphs

The message-passing algorithm can be extended to
more general graphs:

Directed
Tree PolytreeUndirected

Tree

It is then known as the sum-product algorithm. !
A special case of this is belief propagation .

3

PD Dr. Rudolph Triebel!
Computer Vision Group

Machine Learning for
Computer Vision

More General Graphs

The message-passing algorithm can be extended to
more general graphs:

Undirected
Tree

An undirected tree is deÞned
as a graph that has exactly one
path between any two nodes

4

PD Dr. Rudolph Triebel!
Computer Vision Group

Machine Learning for
Computer Vision

More General Graphs

The message-passing algorithm can be extended to
more general graphs:

Directed
Tree

5

A directed tree has
only one node
without parents and
all other nodes
have exactly one
parent

Conversion from
a directed to an
undirected tree is
no problem,
because no links
are inserted

The same is true for the
conversion back to a
directed tree

PD Dr. Rudolph Triebel!
Computer Vision Group

Machine Learning for
Computer Vision

More General Graphs

The message-passing algorithm can be extended to
more general graphs:

Polytree
Polytrees can contain nodes with
several parents, therefore
moralization can remove
independence relations

6

f (x1, x2, x3) = p(x1)p(x2)p(x3 | x1, x2)

PD Dr. Rudolph Triebel!
Computer Vision Group

Machine Learning for
Computer Vision

Factor Graphs

¥ The Sum-product algorithm can be used to do
inference on undirected and directed graphs.

¥ A representation that generalizes directed and
undirected models is the factor graph .

Directed graph Factor graph

7

PD Dr. Rudolph Triebel!
Computer Vision Group

Machine Learning for
Computer Vision

Factor Graphs

¥ The Sum-product algorithm can be used to do
inference on undirected and directed graphs.

¥ A representation that generalizes directed and
undirected models is the factor graph .

Undirected graph Factor graph

8

f a

fb

PD Dr. Rudolph Triebel!
Computer Vision Group

Machine Learning for
Computer Vision

Factor Graphs

Factor graphs
¥ can contain multiple factors

for the same nodes
¥ are more general than

undirected graphs
¥ are bipartite , i.e. they consist

of two kinds of nodes and all
edges connect nodes of
different kind

9

x1 x3

x4

f a

PD Dr. Rudolph Triebel!
Computer Vision Group

Machine Learning for
Computer Vision

Factor Graphs

¥ Directed trees convert to
tree-structured factor graphs

¥ The same holds for
undirected trees

¥ Also: directed polytrees
convert to tree-structured
factor graphs

¥ And: Local cycles in a
directed graph can be
removed by converting to a
factor graph

10

x1 x3

x4

x1 x3

x4

PD Dr. Rudolph Triebel!
Computer Vision Group

Machine Learning for
Computer Vision

The Sum-Product Algorithm

Assumptions:
¥ all variables are discrete
¥ the factor graph has a tree structure

The factor graph represents the joint distribution
as a product of factor nodes:

The marginal distribution at a given node x is

11

p(x) =
!

s

f s(xs)

p(x) =
X

x\ x

p(x)

p(x) =
!

x \ x

"

s! ne(x)

Fs(x, X s)

p(x) =
!

s2ne(x)

"

Xs

F
s

(x, X
s

) =
!

s2ne(x)

µ
fs!x

(x)

PD Dr. Rudolph Triebel!
Computer Vision Group

Machine Learning for
Computer Vision

The Sum-Product Algorithm

For a given node x the joint
can be written as

12

Product of all
factors associated
with fs

p(x) =
!

s! ne(x)

Fs(x, X s)

Thus, we have

Key insight: Sum and product can be exchanged!

ÒMessages from
factors to node xÓ

µ
fs ! x

(x) =
!

x1

á á á
!

xM

f
s

(x, x 1, . . . , x
M

)
"

m" ne(fs) \ x

!

Xs m

G
m

(x
m

, X
sm)

=
!

x1

· · ·
!

xM

f
s

(x, x 1, . . . , x
M

)
"

m! ne(fs)\x

µ
xm " fs (x

m

)

PD Dr. Rudolph Triebel!
Computer Vision Group

Machine Learning for
Computer Vision

The Sum-Product Algorithm

The factors in the messages
can be factorized further:

13

The messages can then be computed as

ÒMessages from
nodes to factorsÓ

Fs(x, X s) = f s(x, x 1, . . . , xM)G1(x1, X s1) . . . GM (xM , X sM)

GM (xm , X sm) =
!

l ! ne(x m) \ f s

Fl (xm , X m l)

µxm!f s (xm) =
!

l2ne(xm) \ f s

"

X ml

Fl (xm , X m l)

PD Dr. Rudolph Triebel!
Computer Vision Group

Machine Learning for
Computer Vision

The Sum-Product Algorithm

The factors G of the
neighboring nodes can
again be factorized further:

14

This results in the exact same situation as above!
We can now recursively apply the derived rules:

=
!

l ! ne(x m) \ f s

µf l " x m (xm)

PD Dr. Rudolph Triebel!
Computer Vision Group

Machine Learning for
Computer Vision

The Sum-Product Algorithm

15

Summary marginalization:

1.Consider the node x as a root note

2.Initialize the recursion at the leaf nodes as:!
 (var) or (fac)

3.Propagate the messages from the leaves to the
root x

4.Propagate the messages back from the root to
the leaves

5.We can get the marginals at every node in the
graph by multiplying all incoming messages

µf ! x (x) = 1 µ
x! f

(x) = f (x)

PD Dr. Rudolph Triebel!
Computer Vision Group

Machine Learning for
Computer Vision

The Max-Sum Algorithm

Sum-product is used to Þnd the marginal
distributions at every node, but:

How can we Þnd the setting of all variables that
maximizes the joint probability? And what is the
value of that maximal probability?

Idea: use sum-product to Þnd all marginals and
then report the value for each node x that
maximizes the marginal p(x)

However: this does not give the overall
maximum of the joint probability

16

=
1
Z

max
x 1

[! 1,2(x1, x2) [. . . max ! N ! 1,N (xN ! 1, xN)]]

PD Dr. Rudolph Triebel!
Computer Vision Group

Machine Learning for
Computer Vision

The Max-Sum Algorithm

Observation: the max-operator is distributive, just
like the multiplication used in sum-product:

Idea: use max instead of sum as above and
exchange it with the product

Chain example:

Message passing can be used as above!

17

max(ab, ac) = a max(b, c) if a ! 0

max
x

p(x) =
1
Z

max
x 1

. . . max[! 1,2(x1, x2) . . . ! N ! 1,N (xN ! 1, xN)]

PD Dr. Rudolph Triebel!
Computer Vision Group

Machine Learning for
Computer Vision

The Max-Sum Algorithm

To Þnd the maximum value of p(x), we start again
at the leaves and propagate to the root.

Two problems:
¥ no summation, but many multiplications; this

leads to numerical instability (very small values)
¥ when propagating back, multiple conÞgurations

of x can maximize p(x), leading to wrong
assignments of the overall maximum

Solution to the Þrst:

Transform everything into log-space and use sums

18

PD Dr. Rudolph Triebel!
Computer Vision Group

Machine Learning for
Computer Vision

The Max-Sum Algorithm

Solution to the second problem:

Keep track of the arg max in the forward step, !
i.e. store at each node which value was
responsible for the maximum:

Then, in the back-tracking step we can recover
the arg max by recursive substitution of:

19

! (x
n

) = arg max
xn�1

[ln f

n! 1,n(x
n! 1, x

n

) + µ

xn�1 " fn�1,n (x
n

)]

x

max
n�1 = ! (xmax

n)

PD Dr. Rudolph Triebel!
Computer Vision Group

Machine Learning for
Computer Vision

Other Inference Algorithms
Junction Tree Algorithm:

¥ Provides exact inference on general graphs.

¥ Works by turning the initial graph into a junction
tree and then running a sum-product-like algorithm

¥ A junction tree is obtained from an undirected
model by triangulation and mapping cliques to
nodes and connections of cliques to edges

¥ It is the maximal spanning tree of cliques
Problem: Intractable on graphs with large cliques.
Cost grows exponentially with the number of
variables in the largest clique (Òtree widthÓ).

20

PD Dr. Rudolph Triebel!
Computer Vision Group

Machine Learning for
Computer Vision

Other Inference Algorithms
Loopy Belief Propagation:

¥ Performs Sum-Product on general graphs,
particularly when they have loops

¥ Propagation has to be done several times, until a
convergence criterion is met

¥ No guarantee of convergence and no global
optimum

¥ Messages have to be scheduled

¥ Initially, unit messages passed across all edges

¥ Approximate, but tractable for large graphs

21

PD Dr. Rudolph Triebel!
Computer Vision Group

Machine Learning for
Computer Vision

Conditional Random Fields

¥ Another kind of undirected graphical model is known
as Conditional Random Field (CRF).

¥ CRFs are used for classiÞcation where labels are
represented as discrete random variables y and
features as continuous random variables x

¥ A CRF represents the conditional probability !
!
!
!
where w are parameters learned from training data.

¥ CRFs are discriminative and MRFs are generative

22

PD Dr. Rudolph Triebel!
Computer Vision Group

Machine Learning for
Computer Vision

Conditional Random Fields

Derivation of the formula for CRFs:

In the training phase, we compute parameters w that
maximize the posterior:

where (x*,y*) is the training data and p(w) is a Gaussian
prior. In the inference phase we maximize

23

PD Dr. Rudolph Triebel!
Computer Vision Group

Machine Learning for
Computer Vision

Conditional Random Fields

Note: the deÞnition of xi,j and yi,j is different
from the one in C.M. Bishop (pg.389)!

Typical example:
observed variables

xi,j are intensity
values of pixels in

an image and
hidden variables yi,j

are object labels

24

PD Dr. Rudolph Triebel!
Computer Vision Group

Machine Learning for
Computer Vision

CRF Training

We minimize the negative log-posterior:

Computing the likelihood is intractable, as we have to
compute the partition function for each w. We can
approximate the likelihood using pseudo-likelihood :

where
Markov blanket Ci: All cliques containing yi

25

PD Dr. Rudolph Triebel!
Computer Vision Group

Machine Learning for
Computer Vision

Pseudo Likelihood

26

PD Dr. Rudolph Triebel!
Computer Vision Group

Machine Learning for
Computer Vision

Pseudo Likelihood

Pseudo-likelihood is computed only on the Markov
blanket of yi and its corresp. feature nodes.

27

PD Dr. Rudolph Triebel!
Computer Vision Group

Machine Learning for
Computer Vision

Potential Functions

¥ The only requirement for the potential functions is
that they are positive. We achieve that with: !
!
!
where f is a compatibility function that is large if the
labels yC Þt well to the features xC.

¥ This is called the log-linear model.

¥ The function f can be, e.g. a local classiÞer

28

PD Dr. Rudolph Triebel!
Computer Vision Group

Machine Learning for
Computer Vision

CRF Training and Inference

Training:
¥ Using pseudo-likelihood, training is efÞcient. We have

to minimize:

¥ This is a convex function that can be minimized using
gradient descent

Inference:
¥ Only approximatively, e.g. using loopy belief

propagation

Log-pseudo-likelihood Gaussian prior

29

PD Dr. Rudolph Triebel!
Computer Vision Group

Machine Learning for
Computer Vision

Summary

¥ Undirected Graphical Models represent conditional
independence more intuitively using graph
separation

¥ Their factorization is done based on potential
functions The normalizer is called the partition
function, which in general is intractable to compute

¥ Inference in graphical models can be done
efÞciently using the sum-product algorithm
(message passing).

¥ Another inference algorithm is loopy belief
propagation, which is approximate, but tractable

¥ Conditional Random Fields are a special kind of
MRFs and can be used for classiÞcation

30

