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Inference on a Chain (Rep.)

¥ The Þrst values of µ!  and µ"  are: 

¥ The partition function can be computed at any node:  

¥ Overall, we have O(NK2) operations to compute the 
marginal 
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More General Graphs

The message-passing algorithm can be extended to 
more general graphs:

Directed 
Tree PolytreeUndirected 

Tree

It is then known as the sum-product algorithm. !
A special case of this is belief propagation . 
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More General Graphs

The message-passing algorithm can be extended to 
more general graphs:

Undirected 
Tree

An undirected tree is deÞned 
as a graph that has exactly one 
path between any two nodes

4



PD Dr. Rudolph Triebel!
Computer Vision Group

Machine Learning for 
Computer Vision

More General Graphs

The message-passing algorithm can be extended to 
more general graphs:

Directed 
Tree
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A directed tree has 
only one node 
without parents and 
all other nodes 
have exactly one 
parent

Conversion from 
a directed to an 
undirected tree is 
no problem, 
because no links 
are inserted

The same is true for the 
conversion back to a 
directed tree
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More General Graphs

The message-passing algorithm can be extended to 
more general graphs:

Polytree
Polytrees can contain nodes with 
several parents, therefore 
moralization can remove 
independence relations
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Factor Graphs

¥ The Sum-product algorithm can be used to do 
inference on undirected and directed graphs.  

¥ A representation that generalizes directed and 
undirected models is the factor graph .

Directed graph Factor graph
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Factor Graphs

¥ The Sum-product algorithm can be used to do 
inference on undirected and directed graphs.  

¥ A representation that generalizes directed and 
undirected models is the factor graph .

Undirected graph Factor graph
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Factor Graphs

Factor graphs  
¥ can contain multiple factors  

for the same  nodes 
¥ are more general than 

undirected graphs 
¥ are bipartite , i.e. they consist 

of two kinds of nodes and all 
edges connect nodes of 
different kind
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Factor Graphs

¥ Directed trees convert to 
tree-structured factor graphs 

¥ The same holds for 
undirected trees 

¥ Also: directed polytrees 
convert to tree-structured 
factor graphs 

¥ And: Local cycles in a 
directed graph can be 
removed by converting to a 
factor graph
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The Sum-Product Algorithm

Assumptions:  
¥ all variables are discrete 
¥ the factor graph has a tree structure 

The factor graph represents the joint distribution 
as a product of factor nodes: 

The marginal distribution at a given node x is
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The Sum-Product Algorithm

For a given node x the joint 
can be written as 
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Product of all 
factors associated 
with  fs

p(x) =
!

s! ne(x )

Fs(x, X s)

Thus, we have 

Key insight: Sum and product can be exchanged!

ÒMessages from 
factors to node xÓ
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The Sum-Product Algorithm

The factors in the messages 
can be factorized further:
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The messages can then be computed as 

ÒMessages from 
nodes to factorsÓ

Fs(x, X s) = f s(x, x 1, . . . , xM )G1(x1, X s1 ) . . . GM (xM , X sM )



GM (xm , X sm ) =
!

l ! ne(x m ) \ f s

Fl (xm , X m l )
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The Sum-Product Algorithm

The factors G of the 
neighboring nodes can 
again be factorized further:
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This results in the exact same situation as above! 
We can now recursively apply the derived rules: 

=
!

l ! ne(x m ) \ f s

µf l " x m (xm )
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The Sum-Product Algorithm
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Summary marginalization: 

1.Consider the node x as a root note 

2.Initialize the recursion at the leaf nodes as:!
                          (var)  or                          (fac) 

3.Propagate the messages from the leaves to the 
root x 

4.Propagate the messages back from the root to 
the leaves 

5.We can get the marginals at every node in the 
graph by multiplying all incoming messages 

µf ! x (x) = 1 µ
x! f

(x) = f (x)
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The Max-Sum Algorithm

Sum-product is used to Þnd the marginal 
distributions at every node, but: 

How can we Þnd the setting of all variables that 
maximizes  the joint probability? And what is the 
value of that maximal probability? 

Idea:  use sum-product to Þnd all marginals and 
then report the value for each node x that 
maximizes the marginal p(x) 

However:  this does not give the overall  
maximum of the joint probability
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The Max-Sum Algorithm

Observation: the max-operator is distributive, just 
like the multiplication used in sum-product:  

Idea: use max instead of sum as above and 
exchange it with the product 

Chain example: 

Message passing can be used as above!
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max(ab, ac) = a max(b, c) if a ! 0

max
x

p(x) =
1
Z

max
x 1

. . . max[! 1,2(x1, x2) . . . ! N ! 1,N (xN ! 1, xN )]
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The Max-Sum Algorithm

To Þnd the maximum value of p(x), we start again 
at the leaves and propagate to the root. 

Two problems: 
¥ no summation, but many multiplications; this 

leads to numerical instability  (very small values) 
¥ when propagating back, multiple conÞgurations 

of x can maximize p(x), leading to wrong 
assignments of the overall maximum 

Solution to the Þrst: 

Transform everything into log-space and use sums
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The Max-Sum Algorithm

Solution to the second problem: 

Keep track of the arg max in the forward step, !
i.e. store at each node which value was 
responsible for the maximum: 

Then, in the back-tracking step we can recover 
the arg max by recursive substitution of: 
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Other Inference Algorithms
Junction Tree Algorithm: 

¥ Provides exact inference on general graphs. 

¥ Works by turning the initial graph into a junction 
tree  and then running a sum-product-like algorithm 

¥ A junction tree is obtained from an undirected 
model by triangulation and mapping cliques to 
nodes and connections of cliques to edges 

¥ It is the maximal spanning tree of cliques  
Problem: Intractable on graphs with large cliques. 
Cost grows exponentially with the number of 
variables in the largest clique (Òtree widthÓ).
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Other Inference Algorithms
Loopy Belief Propagation: 

¥ Performs Sum-Product on general graphs, 
particularly when they have loops 

¥ Propagation has to be done several times, until a 
convergence criterion is met 

¥ No guarantee of convergence and no global 
optimum 

¥ Messages have to be scheduled 

¥ Initially, unit messages passed across all edges  

¥ Approximate, but tractable for large graphs
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Conditional Random Fields

¥ Another kind of undirected graphical model is known 
as Conditional Random Field  (CRF). 

¥ CRFs are used for classiÞcation where labels are 
represented as discrete random variables y and 
features as continuous random variables x 

¥ A CRF represents the conditional probability !
!
!
!
where w are parameters learned from training data. 

¥ CRFs are discriminative  and MRFs are generative
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Conditional Random Fields

Derivation of the formula for CRFs: 

In the training phase, we compute parameters w that 
maximize the posterior:  

where (x*,y*) is the training data and p(w) is a Gaussian 
prior. In the inference phase we maximize
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Conditional Random Fields

Note: the deÞnition of xi,j and yi,j is different 
from the one in C.M. Bishop (pg.389)!

Typical example: 
observed  variables 

xi,j are intensity 
values of pixels in 

an image and 
hidden  variables yi,j 

are object labels
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CRF Training

We minimize the negative log-posterior:  

Computing the likelihood is intractable, as we have to 
compute the partition function for each w. We can 
approximate the likelihood using pseudo-likelihood : 

where
Markov blanket Ci: All cliques containing yi
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Pseudo Likelihood
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Pseudo Likelihood

Pseudo-likelihood is computed only on the Markov 
blanket of yi and its corresp. feature nodes.
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Potential Functions

¥ The only requirement for the potential functions is 
that they are positive. We achieve that with: !
!
!
where f is a compatibility function that is large if the 
labels yC Þt well to the features xC. 

¥ This is called the log-linear model.  

¥ The function f can be, e.g. a local classiÞer
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CRF Training and Inference

Training: 
¥ Using pseudo-likelihood, training is efÞcient. We have 

to minimize: 

¥ This is a convex function that can be minimized using 
gradient descent  

Inference: 
¥ Only approximatively, e.g. using loopy belief 

propagation

Log-pseudo-likelihood Gaussian prior
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Summary

¥ Undirected Graphical Models represent conditional 
independence more intuitively using graph 
separation 

¥ Their factorization is done based on potential 
functions The normalizer is called the partition 
function, which in general is intractable to compute 

¥ Inference in graphical models can be done 
efÞciently using the sum-product algorithm 
(message passing). 

¥ Another inference algorithm is loopy belief 
propagation, which is approximate, but tractable 

¥ Conditional Random Fields are a special kind of 
MRFs and can be used for classiÞcation
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