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Motivation

e Often the introduction of latent (unobserved)
random variables into a model can help to express
complex (marginal) distributions

* A very common example are mixture models, in
particular Gaussian mixture models (GMM)

* Mixture models can be used for clustering
(unsupervised learning) and to express more
complex probabillity distributions

* As we will see, the parameters of mixture models
can be estimated using maximum-likelihood
estimation such as expectation-maximization
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K-means Clustering

* Given: data set {x1,.--,Xn~}, number of clusters K
e Goal: find cluster centers {uq,..., s} so that

N K
T=3"5 rallxa — el

n=1k=1
IS minimal, where r, = 1 if x, is assigned to p,
e |dea: compute r,r and p,, iteratively
e Start with some values for the cluster centers
* Find optimal assignments r,;
e Update cluster centers using these assignments
e Repeat until assignments or centers don’t change
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K-means Clustering

Initialize cluster means:  {pt{,..., 5}

KARARK XK KK

Machine Learning for PD Dr. Rudolph Triebel
Computer Vision Computer Vision Group




K-means Clustering

Find optimal assignments:

1 if k= argmin; %), — Mj”
Tk — .
0 otherwise
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K-means Clustering

Find new optimal means: 0.J
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K-means Clustering

Find new optimal assignments:

1 if k= argmin; %), — Mj”
Tk — .
0 otherwise
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K-means Clustering

Iterate these steps until means and
assignments do not change any more
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2D Example

e Real data set e Magenta line is “decision
e Random initialization boundary”

Machine Learning for PD Dr. Rudolph Triebel
Computer Vision Computer Vision Group



The Cost Function

1000 |

J

500

| 2 3 4
*® After every step the cost function J is minimized
* Blue steps: update assignments

* Red steps: update means
e Convergence after 4 rounds
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K-Means: Additional Remarks

- K-means converges always, but the minimum is
not guaranteed to be a global one

* There is an online version of K-means

* After each addition of x,, the nearest center u, is

updated: new old ol

prp =yt n(Xe — py
* The K-medoid variant:

* Replace the Euclidean distance by a general measure
V. N K
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Mixtures of Gaussians

* Assume that the data consists of K clusters
e The data within each cluster is Gaussian

® For any data point x we introduce a K-dimensional
binary random variable z so that:
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A Simple Example

1| - 1

0.5} 0.5

e Mixture of three Gaussians with mixing coefficients
o | eft: all three Gaussians as contour plot

* Right: samples from the mixture model, the red
component has the most samples
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Parameter Estimation

* From a given set of training data {x;,...,xy} we
want to find parameters (71, x, 11 . g 21, k)

N K
p(X17°'°7XN|7T1 ..... K?l’l’l ..... K?zl ..... K):HZT‘-RN(X’R|“k7zk)

or, applying the logarithm:

N K
log p(X | m,p, %) = Y log > mpN (xp | pry, Sie)
k=1

n=1

e However: this is not as easy as maximum-
likelihood for single Gaussians!
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Problems with MLE for Gaussian Mixtures

®* Assume that for one £ the mean p,is exactly at a
data point x,

e For simplicity: assume that %, = o271
* Then: 1
V 2#0,?

* This means that the overall log-likelihood can be
maximized arbitrarily by letting o, — 0 (overfitting)

e Another problem is the identifiability:
e The order of the Gaussians is not fixed, therefore:

N(Xn | Xnvgl%]) —

® There are K/ equivalent solutions to the MLE problem
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Overfitting with MLE for Gaussian Mixtures

‘ |

p(z)

X

* One Gaussian fits exactly to one data point

e [t has a very small variance, i.e. contributes
strongly to the overall likelihood

e |n standard MLE, there is no way to avoid this!
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Expectation-Maximization

* EM is an elegant and powerful method for MLE
problems with latent variables

* Main idea: model parameters and latent variables
are estimated iteratively, where average over the
latent variables (expectation)

e A typical example application of EM is the
Gaussian Mixture model (GMM)

e However, EM has many other applications
* First, we consider EM for GMMs
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Expectation-Maximization for GMM

e First, we define the responsibilities:

Zznk =1

k
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Expectation-Maximization for GMM

e First, we define the responsibilities:
V(2nk) = p(2nk = 1| Xp)

B 7Tlv/\/’(xn ‘ 122°% Zk)
T K
Zj:l miN (xy, | 7% )

* Next, we derive the log-likelihood wrt. to ;. :

Olog p(X | 7, u, )

!
=0
Oy,

PD Dr. Rudolph Triebel

Computer Vision Group



Expectation-Maximization for GMM

e First, we define the responsibilities:
V(2nk) = p(2nk = 1| Xp)

- WkN(X’fl ‘ Hi > Zk)
T K
Zj:1 miN (xy, | 7% )

* Next, we derive the log-likelihood wrt. to ;. :
Olog p(X | 7, p, %)
Oy,

and we obtain: Y A (Zak) X
Hi = N
S:n—l W(an)

|
=0
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Expectation-Maximization for GMM

e \We can do the same for the covariances:

Ologp(X | 7, p, X)

!
=0
0>}

and we obtain:
y:fj—l Y(Znk) (Xn — ) (Xn — Nk:)T
;:7]7\,[—1 ¥ (2nk)
* Finally, we derive wrt. the mixing coefficients 7y, :
Olog p(X | 7, p, %)
071

i =

K

|

=0 where: Y =1
k=1
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Expectation-Maximization for GMM

e \We can do the same for the covariances:

Ologp(X | 7, p, X)

!
=0
0>}

and we obtain:
y:fj—l Y(Znk) (Xn — ) (Xn — Nk:)T
;:7]7\,[—1 ¥ (2nk)
* Finally, we derive wrt. the mixing coefficients 7y, :
Olog p(X | 7, p, %)
071

i =

K
~ 0 where: » me=1
. N k=1
and the resultis:  m = = (zu)

n=1
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Algorithm Summary

1.Initialize means u.covariance matrices X,and
mixing coefficients =y

2.Compute the initial log-likelihood logp(X | 7, u, X)
3. E-Step. Compute the responsibilities:
N(xp | pg, 2

Zj:l miN (%7, | 7% )

4. M-Step. Update the parameters:

N N new new N
new __ anl ’}/(an)Xn ynew __ anl ’}/(an)(Xn B H’ke )(Xn B I“l’ke )T new __ 1
— ko = T = N Z ¥ (2nk)

Zf’z,vzl ’V(an) Zr,]jzl ’V(an) n—1

5.Compute log-likelihood; if not converged go to 3.
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The Same Example Again

2t 2t X!

Of 0} 0l

=2t 0t |
—2 0 (a) 2 =2 0 (b) 2 -2 0 (c) 2

Machine Learning for PD Dr. Rudolph Triebel
Computer Vision Computer Vision Group




Observations

* Compared to K-means, points can now belong to
both clusters (soft assignment)

¢ |n addition to the cluster center, a covariance Is
estimated by EM

* |nitialization is the same as used for K-means
* Number of iterations needed for EM is much higher
* Also: each cycle requires much more computation

e Therefore: start with K-means and run EM on the
result of K-means (covariances can be initialized to
the sample covariances of K-means)

* EM only finds a local maximum of the likelihood!
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A More General View of EM

®* Assume for a moment that we observe X and the
binary latent variables Z. The likelihood is then:

Remember:
K

X Z Z — n n T 72
p( ) ‘ T, K, ) H p(Z ‘ W)p(X | > K ) znk € 0,1}, Zznkzl

n=1

where p(z, | r) = Hﬂznk and Zn

K
p(Xn ‘ Zn, L, E) — HN(Xn ‘ l’l’kazk)znk Xn
k=1

which leads to the log-formulation: \ y

logp(X, Z | m,p,2) =Y > zur(logmi +log N (x| pay, X))
n=1 k=1
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The Complete-Data Log-Likelihood

N K

logp(X, Z |, p, %) = >: >:an(10g7% + log N (%0 | pg, X))
n=1 k=1

e This is called the complete-data log-likelihood

e Advantage: solving for the parameters (7, @y, 2x)
IS much simpler, as the log Is inside the sum!

* We could switch the sums and then for every

mixture component £ only look at the points that
are associated with that component.

* This leads to simple closed-form solutions for the
parameters

®* However: the latent variables Z are not observed!
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The Main Ildea of EM

* |Instead of maximizing the joint log-likelihood, we
maximize its expectation under the latent variable
distribution:

2
2

iz llogp(X, Z | m, 1, B)] = 2 zn] (log m +log N (x| py, En))
k

I\
[

n

where the latent variable distribution per point is:

P(Xn | Zn, 0)p(z, | 6)
p(xn | 6)

— Hllil(ﬂlN(Xn ‘ I,l,ljzl))znl
Zjl'{zl 7-‘-.7"/\/(Xn | 223 Zj)

p(Zn ‘ Xnag) — 0 = (777/1’7 Z)
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The Main Ildea of EM

The expected value of the latent variables is:

L\ 2nk] = ¥(2nk)
plugging in we obtain:

N\

Czllogp(X, Z |7, p, X)) = Y(2znk)(log g +log N (%4, | by, X))

We compute this iteratively:

1. Initialize i =0, (7, u}, X5)

2. Compute Elz,x] = v(znk)

3. Find parameters(=;t', ui™, 271 that maximize this

4. Increase i; if not converged, goto 2.
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The Theory Behind EM

e \We have seen that EM maximizes the expected
complete-data log-likelihood, but:

e Actually, we need to maximize the log-marginal
logp(X | 8) =log > p(X,Z|6)
4

* |t turns out that the log-marginal is maximized
implicitly!
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The Theory Behind EM

e \We have seen that EM maximizes the expected
complete-data log-likelihood, but:

e Actually, we need to maximize the log-marginal
logp(X | 8) =log > p(X,Z|6)
4

* |t turns out that the log-marginal is maximized
implicitly!

logp(X | 0) = L(q,0) + KL(q||p)

2

S

2
||

p(X,Z|6) p(Z | X,0)
EZ:q(Z) log == KL(qllp) = —EZ:Q(Z) log ==
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Visualization

L(q,0) Inp(X|0)

e The KL-divergence is positive or O
®* Thus, the log-likelihood is at least as large as L or:

®* £ is a lower bound of the log-likelihood:
logp(X | 0) > L(q,0)
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What Happens in the E-Step?

KL(¢g|lp) =0

E(C], Hold) lnp(X|901d)

* The log-likelihood is independent of ¢
* Thus: L is maximized iff KL is minimal
e Thisisthe case iff ¢(Z)=p(Z| X, 0)
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What Happens in the M-Step?

E(q’ HneW) lnp(XleneW)

®°|n the M -step we keep g fixed and find new @
L(q, Zp (Z | X,0°%)logp(X,Z | 6 Zq )log ¢(Z

e \We maX|m|ze the first term, the second IS mdep.

e This implicitly makes KL non-zero

* The log-likelihood is maximized even more!
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Visualization in Parameter-Space

In p(X16)

L (q,0)

\

00](1 91]0W

* [n the E-step we compute the concave lower
bound for given old parameters 6°'¢ (blue curve)

* [n the M-step, we maximize this lower bound and
obtain new parameters 9"V

* This is repeated (green curve) until convergence
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Variants of EM

* |nstead of maximizing the log-likelihood, we can
use EM to maximize a posterior when a prior is

given (MAP instead of MLE) = less overfitting

* |n Generalized EM, the M-step only increases the
lower bound instead of maximization (useful if
standard M-step is intractable)

e Similarly, the E-step can be generalized in that the
optimization wrt. g is not complete

e Furthermore, there are incremental versions of EM,
where data points are given sequentially and the
parameters are updated after each data point.
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Example 1: Learn a Sensor Model

- A Radar range finder on a metallic target wi
returns 3 types of measurement:

* The distance to target
* The distance to the wall behind the target
* A completely random value

30 - + ‘ —

23 b - -

0 S 10 15 20

12,6293, 4.24577
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Example 1: Learn a Sensor Model

« Which point corresponds to from which model?
- What are the different model parameters?
« Solution: Expectation-Maximization

e
++ +H

+
+ + M N i
" + - R PR
F-H- + + + H + + + + 4+ + + + + + +—.
£ +F + + + + - + % + + +
i # o+ L e+ o+ +F c et R tohy Tt ¥ LA
+ + +
_+_
t,oh
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Example 2: Environment Classification

features: => points in NnD space

0.3

« K-means only finds the cluster
centers, not their extent and shape "
* The centers and covariances can - ®
be obtained with EM _ - ;
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Example 3: Plane Fitting in 3D

* Has been done Iin this paper
e Given a set of 3D points, fit planes into the data

e |dea: Model parameters 6 are normal vectors and
distance to origin for a set of planes

e Gaussian noise model: p(z | 0) =N (d(z,6) | 0,0)

point-to-plane noise
distance variance

* [ntroduce latent correspondence
variables C;; and maximize the expected log-lik.:

U[logp(Z,C | 0)

e Maximization can be done in closed form
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http://edlab-www.cs.umass.edu/cs589/2010-lectures/thrun.3D-EM.pdf

Example 3: Plane Fitting in 3D
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Summary

- K-means is an iterative method for clustering

- Mixture models can be formalized using latent
(unobserved) variables

- A very common example are Gaussian mixture
models (GMMSs)

- To estimate the parameters of a GMM we can
use expectation-maximization (EM)

- In general EM can be interpreted as maximizing
a lower bound to the complete-data loglikelihood

- EM Is guaranteed to converge, but it may run
into local maxima
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