
TU München

Fakultät für Informatik

PD Dr. Rudolph Triebel

John Chiotellis

Machine Learning for Robotics and Computer Vision
Winter Term 2015

Solution Sheet 1
Topic 1: Introduction to Probabilistic Reasoning and Learning and Regression

November 6, 2015

Exercise 1:

a)

p(X = green|Z = green) =
p(Z = green|X = green)p(X = green)

p(Z = green)

=
p(Z = green|X = green)p(X = green)∑

x∈{red,green,blue} p(Z = green|X = x)p(X = x)

=
0.62

5

0.12
5

+ 0.62
5

+ 0.21
5

=
0.24

0.04 + 0.24 + 0.04

=
0.24

0.32
=

3

4
= 0.75

b)

p(z | x) = N(z|x, σ2
1) =

1√
2πσ2

1

e
− 1

2
(z−x)2

σ2
1 =

1

0.3
√

2π
e−5.55(z−x)2

(1)

where σ1 = 0.3 is the sensor noise.

c) The motion can also be modeled with a Gaussian. We just need to think about what
is our mean and what is our variance. The variance is given as the actuator noise
σ2 = 0.1. Our mean is the position we expect our robot to be at, after the motion
ut. Since our robot moves with constant speed v, the expected position is simply
µ = xt−1 + v∆t. Therefore we have

p(xt|xt−1, ut) = N(xt|xt−1 + v∆t, σ2
2)

=
1√

2πσ2
2

e
− 1

2

(xt−(xt−1+v∆t))2

σ2
2

=
10√
2π
e−50(xt−(xt−1+v∆t))2

d) We model the state variable x as a discrete random variable with values between 0
and 5, where 0 means that the robot is at the door. We want to compute the robot's
belief. Initially, the robot knows it is located at the door (x=0), therefore we have
Bel(x0 = 0) = 1. We then use the Bayes �lter algorithm to compute the belief after
3 seconds, namely Bel(x3). Since it is a recursive algorithm we have to compute the
belief at every time step. The general equation of the Bayes �lter is:

Bel(xt) = η p(zt|xt)
∫
p(xt|ut, xt−1)Bel(xt−1)dxt−1 (2)

Our ui, namely our action is always the same: move with constant speed v = 1m/s.
Here is the �rst step:

Bel(x1) = η1p(z1|x1)

∫
p(x1|u1, x0)Bel(x0)dx0 (3)

= η1p(z1|x1)

∫
p(x1|u1, x0)dx0 (4)

= η1N(z1|x1, σ
2
1)

5∑
x0=0

N(x1|x0 + 1, σ2
2) (5)

= η1N(z1|x1, σ
2
1)N(x1|x0 + 1, σ2

2) (6)

Let us separate the computation to the motion and the sensing part. Since we have
Bel(x0 = 0) = 1 we begin from the motion u1.

p(x1|u1, x0) = N(x1|x0 + 1, σ2
2) (7)

The belief of the robot after the �rst motion can be estimated as

Bel′(x1) =
5∑

x0=0

N(x1|x0 + 1, σ2
2) (8)

Now we take into account the sensor measurement z1:

p(z1|x1) = N(z1|x1, σ
2
1) (9)

Therefore

Bel(x1) = η1p(z1|x1)Bel′(x1) (10)

Since our positions are restricted to a space xt ∈ {0, 1, 2, 3, 4, 5}, we can compute
our normalizers ηi using (the inverse of) the sum of the probabilities for all possible
states.

η−1
1 =

5∑
x′1=0

Bel(x1 = x′1) (11)

If we recursively substitute the beliefs we get:

Bel(x3) = η3p(z3|x3)

∫
p(x3|u3, x2)Bel(x2)dx2

= η3p(z3|x3)

∫
p(x3|u3, x2)η2p(z2|x2)

∫
p(x2|u2, x1)Bel(x1)dx1dx2

Plugging the numbers in we get the following table:

x 0 1 2 3 4 5
Bel(x0) 1 0 0 0 0 0
Bel(x1) 0.0001 0.9998 6.8798e-24 2.6318e-95 5.5977e-215 0
Bel(x2) 3.9381e-11 0.0762 0.9237 8.3773e-27 3.7763e-59 2.7476e-138
Bel(x3) 2.6757e-26 2.3196e-07 0.2499 0.7500 2.1622e-27 4.3797e-63

We can see that the robot believes that it is 3m away from the door and is about
75% certain.

Exercise 2:

Here are several examples of learning algorithms:

• Mean-shift clustering: Unsupervised learning

• Perceptron algorithm: Discriminant function

• Bayes classi�er: Generative model

• Conditional Random Field: Discriminative model

• AdaBoost: Discriminant function

For a detailed explanation, please see the textbook Pattern Recognition and Machine

Learning by C.M. Bishop or the slides.

Exercise 3:

Abbildung 1: Tracker data from quadrocopter. The lines are just an interpolation between
the tracked positions (data points).

a) See �gure 1.

b) The task is to estimate the speed of the quadrocopter. We do this using polynomial
regression. The functions that we learn are dependent on time. We have to �nd three
functions, one for each coordinate (x, y, z). The regression is done with the matrix
Φ and vectors ti:

Φ =


1 0
1 1
1 2
1 3
1 4
1 5

 tx =


2

1.08
−0.83
−1.97
−1.31
0.57

 ty =


0

1.68
1.82
0.28
−1.51
−1.91

 tz =


1

2.38
2.49
2.15
2.59
4.32


The second column of Φ are the timestamps at which the measurements have been
taken. In this �rst case, we assume constant velocity, i.e. we don't have acceleration
and the motion equation has only two unkowns w0 and w1, i.e. for the case of the
x-coordinates we have

x(τ) = w0 + w1τ, wx = (w0, w1)T

where τ = 0, 1, . . . is the time stamp. Thus, Φ has two cloumns.

The pseudoinverse of Φ is

Φ† =

(
0.524 0.381 0.238 0.095 −0.048 −0.190
−0.143 −0.086 −0.029 0.029 0.086 0.143

)

With this we compute wi = Φ†ti:

wx1 = Φ†tx =

(
1.0267
−0.4421

)
wy =

(
1.5383
−0.5918

)
wz =

(
1.2825
0.4830

)
To compute the speed we need v = (−0.4421,−0.5918, 0.4830)T . The speed is ‖v‖ =
0.8827.
The residual errors are de�ned as

rx = ‖Φwx − tx‖ = 2.8902 (12)

ry = ‖Φwy − ty‖ = 2.4571 (13)

rz = ‖Φwz − tz‖ = 1.2807 (14)

(15)

c) Now we have a quadratic motion equation:

x(τ) = w0 + w1τ + w2τ
2, wx = (w0, w1, w2)T ,

where w1 is velocity and w2 is (half the) acceleration. This means we have to estimate
3 function parameters. Thus, the matrix Φ has one more column, i.e.

Φ =


1 0 0
1 1 1
1 2 4
1 3 9
1 4 16
1 5 25


Again, we compute the pseudoinverse and multiply it with the vectors ti. We obtain:

wx =

 2.4739
−2.6128
0.4341

 wy =

 0.4573
1.0297
−0.3243

 wz =

 1.4656
0.2084
0.0549


The residual errors are now

rx = 1.1474 (16)

ry = 1.4527 (17)

rz = 1.2359 (18)

(19)

d) If we want to estimate the position in the next second we can imagine a new row in
our Φ matrix φ6 = (1 6 36). Multiplying this row with our model parameters w
for the last model gives us the estimate:

t′6 = φ6w = (2.4259 − 5.0397 4.6930)T (20)

Exercise 4: Programming

See Code.

