
TU München
Fakultät für Informatik
PD Dr. Rudolph Triebel
John Chiotellis

Machine Learning for Robotics and Computer Vision
Winter term 2015

Solution Sheet 2
Topic: Graphical Models

November 20th

Exercise 1:

a)
p(A)p(C)p(B | A,C)p(D | C)p(E | B)

b) We have:

• A ⊥⊥ C | ∅,
• D ⊥⊥ A,B | C,

• E ⊥⊥ A,C,D | B.

c) Algorithm to check, whether X is d-seperated from Y by Z (X,Y,Z sets of nodes):

boolean is_dsep(X,Y,Z){
foreach x ∈ X, y ∈ Y

foreach path p connecting x and y

if (!is_blocked(p,Z)) return false;

end;

end;

return true;

}

boolean is_blocked(p,Z){
foreach n ∈ p

if (type(n) == hh)

if (n /∈ Z ∧ m /∈ Z ∀ n→ . . .→m)

return true; //case (b)

end

else //type(n) == ht or type(n) == tt

if (n ∈ Z)

return true; //case (a)

end

end

end

return false;

}

• B is d-separated from D by C: true (case (a)),

• A is d-separated from C by E: false (case (b) fails as B → E),

• A is d-separated from C by D: true (case (b)),

• E is d-separated from D by B: true (case (a)),

• E is d-separated from D by A: false.

Exercise 2: Writing a graphical model

a) The observed variables are the map M and the goal G, and the size of the doors Ot.

b) The independence assumptions are

(i) At ⊥⊥ Ot | St,M,G
the action should be independent from the observation conditionally to the
location, the map, and the goal. This is the whole point of having a state
variable (here the location): abstracting the complexity of the observations
into a represention where decision is easier.

(ii) St+1 ⊥⊥ Ot, G | At, St,M
the next location should be independent from the observation and the goal
conditionally to the present location, the map, and the action

(iii) G ⊥⊥M | ∅
the goal is independent from the map

(iv) Ot ⊥⊥ G | St
the observation is independent from the goal, conditionally to the location

(v) St ⊥⊥M,G | ∅
the location is independent from both the goal and the map

(vi) Ot ⊥⊥M | St (optional)
the observation should be independent on the map given the location

c) With the product rule, we have for example:

p(St, St+1, At, Ot,M,G) = p(G)p(M | G)p(St | M,G)p(Ot | St,M,G) (1)

p(At | Ot, St,M,G)p(St+1 | At, Ot, St,M,G) (2)

Applying the independence assumptions in the corresponding factors, we deduce
the following simplification for the joint probability distribution:

p(St, St+1, At, Ot,M,G) = p(G)p(M)p(St)p(Ot | St)p(At | St,M,G)p(St+1 | At, St,M)

It turns out that the factorization (1) was a good choice as it can be simplified by
applying (i)-(vi). Note however that starting from any other factorization one can
obtain (1) by applying Bayes rule.

Figure 1: Model Proposal.

d) Figure 1 shows the graphical model corresponding to our joint distribution for which
it is a perfect map. Aside from M and G (which are just contextual variable and
do not change over time), this model is a Partially Observable Markov Decision
Process (POMDP). It is a decision process as we want to issue actions At that have
influence on the evolution of the state. It is Markovian as the state St+1 does not
depend on states earlier than St. And its state is partially observable as we don’t
observe the state variable St but only an observation that depends on it.

For this particular problem, we could have reversed the arrow from St to Ot; that
is, instead of assuming St ⊥⊥ M,G | ∅ and Ot ⊥⊥ M,G | St, we could have assumed
Ot ⊥⊥M,G | and St ⊥⊥M,G | Ot. However the form we’ve chosen is more common,
as it’s often easier to specify what should see a sensor in a particular situation
(sensor model) than the inverse.

Exercise 3: Markov Chain

a)

p(A,B,C,D) =
1

Z
ψA,B(A,B)ψB,C(B,C)ψC,D(C,D)

b) All three potential functions are the same:

V1

V2 0 1

0 9 1
1 1 9

Notice that the values need not be normalized in any way.

c) µα and µβ can be calculated recursively:

µα(xn) =
∑
xn−1

ψn−1,n(xn−1, xn)µα(xn−1)

µβ(xn) =
∑
xn+1

ψn,n+1(xn, xn+1)µβ(xn+1)

With our potentials this yields:

• µα(A) =

(
1
1

)
(initialization, optional),

• µα(B) =

(∑
A µα(A)ψA,B(A, 0)∑
A µα(A)ψA,B(A, 1)

)
=

(
1× 9 + 1× 1
1× 1 + 1× 9

)
=

(
10
10

)
• µα(C) =

(∑
B µα(B)ψB,C(B, 0)∑
B µα(B)ψB,C(B, 1)

)
=

(
10× 9 + 10× 1
10× 1 + 10× 9

)
=

(
100
100

)
• µα(D) =

(∑
C µα(C)ψC,D(C, 0)∑
C µα(C)ψC,D(C, 1)

)
=

(
100× 9 + 100× 1
100× 1 + 100× 9

)
=

(
1000
1000

)
• µβ(D) =

(
1
1

)
(initialization, optional),

• µβ(C) =

(∑
D µβ(D)ψC,D(0, D)∑
D µβ(D)ψC,D(1, D)

)
=

(
1× 9 + 1× 1
1× 1 + 1× 9

)
=

(
10
10

)
• µβ(B) =

(∑
C µβ(C)ψB,C(0, C)∑
C µβ(C)ψB,C(1, C)

)
=

(
10× 9 + 10× 1
10× 1 + 10× 9

)
=

(
100
100

)
• µβ(A) =

(∑
B µβ(B)ψA,B(0, B)∑
B µβ(B)ψA,B(1, B)

)
=

(
100× 9 + 100× 1
100× 1 + 100× 9

)
=

(
1000
1000

)
Then we compute normalization factor Z at any point, for example B:

Z =
∑
B

µα(B).µβ(B) = 2000

Finally we can compute the marginal distributions requested:

p(A) =
1

Z
.µα(A).µβ(A) =

1

2000

(
1× 1000
1× 1000

)
=

(
0.5
0.5

)

p(C) =
1

Z
.µα(C).µβ(C) =

1

2000

(
100× 10
100× 10

)
=

(
0.5
0.5

)
The assumptions were only that neighboring nodes should be equal. The marginal
on A and C both say that we have no idea on their value. That was to be expected.

d) We’ve learned that we could compute marginal distributions by decomposing the
inference into messages to be passed between nodes.

How can we adapt this mecanism to observations?

If the chain contained only C and D, we would have:

p(C | [D = 1]) =
1

Z ′

(
ψC,D(0, 1)
ψC,D(1, 1)

)
This can be written in the same message passing form:

p(C | [D = 1]) =
1

Z ′

(
1
1

)
.

(∑
D µ
′
β(D)ψC,D(0, D)∑

D µ
′
β(D)ψC,D(1, D)

)

with µ′β(D) =

(
0
1

)
.

Actually, you just have to replace the µ∗(X) with a Dirac in order to account for
an observation of the value of X (and recompute the normalization factor):

• µα(A) =

(
1
1

)
,

• µα(B) =

(∑
A µα(A)ψA,B(A, 0)∑
A µα(A)ψA,B(A, 1)

)
=

(
1× 9 + 1× 1
1× 1 + 1× 9

)
=

(
10
10

)
• µα(C) =

(∑
B µα(B)ψB,C(B, 0)∑
B µα(B)ψB,C(B, 1)

)
=

(
10× 9 + 10× 1
10× 1 + 10× 9

)
=

(
100
100

)
• µα(D) =

(∑
C µα(C)ψC,D(C, 0)∑
C µα(C)ψC,D(C, 1)

)
=

(
100× 9 + 100× 1
100× 1 + 100× 9

)
=

(
1000
1000

)
• µ′β(D) =

(
0
1

)
(observation),

• µ′β(C) =

(∑
D µ
′
β(D)ψC,D(0, D)∑

D µ
′
β(D)ψC,D(1, D)

)
=

(
0× 9 + 1× 1
1× 1 + 0× 9

)
=

(
1
9

)
• µ′β(B) =

(∑
C µ
′
β(C)ψB,C(0, C)∑

C µ
′
β(C)ψB,C(1, C)

)
=

(
1× 9 + 9× 1
1× 1 + 9× 9

)
=

(
18
82

)
• µ′β(A) =

(∑
B µ
′
β(B)ψA,B(0, B)∑

B µ
′
β(B)ψA,B(1, B)

)
=

(
18× 9 + 82× 1
18× 1 + 82× 9

)
=

(
244
756

)

As above, we can also compute Z ′ = 1000 and then:

p(A | [D = 1]) =
1

Z ′
.µα(A).µ′β(A) =

1

1000

(
1× 244
1× 756

)
=

(
0.244
0.756

)

p(C | [D = 1]) =
1

Z ′
.µα(C).µ′β(C) =

1

1000

(
100× 1
100× 9

)
=

(
0.1
0.9

)
Now, we know that node D equals 1 and we see it has become more probable for
A and C to be equal to 1 (the more for C which is nearer D than A). At least the
result makes sense.

e) With the same way, we can recompute µ′α (which is symmetric to µβ):

• µ′α(A) =

(
1
0

)
,

• µ′α(B) =

(∑
A µ
′
α(A)ψA,B(A, 0)∑

A µ
′
α(A)ψA,B(A, 1)

)
=

(
1× 9 + 0× 1
1× 1 + 0× 9

)
=

(
9
1

)
• µ′α(C) =

(∑
B µ
′
α(B)ψB,C(B, 0)∑

B µ
′
α(B)ψB,C(B, 1)

)
=

(
9× 9 + 1× 1
9× 1 + 1× 9

)
=

(
82
18

)
• µ′α(D) =

(∑
C µ
′
α(C)ψC,D(C, 0)∑

C µ
′
α(C)ψC,D(C, 1)

)
=

(
82× 9 + 18× 1
82× 1 + 18× 9

)
=

(
756
244

)
Now Z” = 244 and:

p(C | [D = 1]) =
1

Z”
.µ′α(C).µ′β(C) =

1

244

(
82× 1
18× 9

)
≈
(

0.336
0.664

)

It would be the reverse for B:

(
0.664
0.336

)
. It is not exactly 2

3
. Actually, with a longer

chain, both µ′α and µ′β would (exponentially) converge to uniforms as we consider
node further from their origin. Therefore for a long chain, the probability will come

from

(
100%
0%

)
to rest at the uniform

(
50%
50%

)
before setting to

(
0%

100%

)
. In

order to “straighten” the values, we could lower the probability of being different
from neighboring nodes.

Note that the known nodes are at the boundary of our chain. If it was not the
case, the d-separation property would have allowed us to split the chain in two
independent subchains having both a copy of the observed variable as the new
boundary.

