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Exercise 1: Viterbi algorithm

a) The state is the position of the robot. We have a discrete state space of 9 squares.
Each state is a pair (x,y), so xi ∈ {(1, 1), (1, 2) . . . , (3, 3)}.
The observation space is also discrete and it consists of the 3 colors the robot may
observe, so zi ∈ {R,G,B}. The trellis diagram would look like this:
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b) The robot can only move vertically or horizontally, so there are four possible moves
(up, down, left, right). Since the robot moves randomly, each of these has probability
pmove = 0.25. For all states except the one in the central square, there are moves
that lead out of the bounds of the room. Then the robot stays at its current position,
so the probability for that move is assigned to the transition to the self-state. The
transition matrix looks as follows:

xi

xi (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

(1,1) 0.50 0.25 0.00 0.25 0.00 0.00 0.00 0.00 0.00
(1,2) 0.25 0.25 0.25 0.00 0.25 0.00 0.00 0.00 0.00
(1,3) 0.00 0.25 0.50 0.00 0.00 0.25 0.00 0.00 0.00
(2,1) 0.25 0.00 0.00 0.25 0.25 0.00 0.25 0.00 0.00
(2,2) 0.00 0.25 0.00 0.25 0.00 0.25 0.00 0.25 0.00
(2,3) 0.00 0.00 0.25 0.00 0.25 0.25 0.00 0.00 0.25
(3,1) 0.00 0.00 0.00 0.25 0.00 0.00 0.50 0.25 0.00
(3,2) 0.00 0.00 0.00 0.00 0.25 0.00 0.25 0.25 0.25
(3,3) 0.00 0.00 0.00 0.00 0.00 0.25 0.00 0.25 0.50

c) We want to use the Viterbi algorithm to estimate the most likely sequence of squares
the robot followed. To do that we need to compute the transition matrix A (previous
question), the initial state probabilities πi and the observation model p(zi|xi). The
robot’s initial position is unknown, therefore we have πi = 1

9
∀i ∈ {1, . . . , 9}.

The robot’s observation model is almost given by the table. We just have to replace
the actual color with each state the robot can be at. Then we obtain p(zi|xi):

zi

xi (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

R 0.1 0.8 0.1 0.8 0.1 0.1 0.1 0.1 0.8
G 0.6 0.1 0.2 0.1 0.2 0.6 0.2 0.6 0.1
B 0.3 0.1 0.7 0.1 0.7 0.3 0.7 0.3 0.1

We initialize with δ(x0) = p(x0)p(z0|x0). We know p(x0) = π and z0 = R, so we
have δ(x0):

z0

x0 (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

R 0.0111 0.0889 0.0111 0.0889 0.0111 0.0111 0.0111 0.0111 0.0889

Now we look at the second observation: z1 = G. For each state we compute δ(x1):

δ(x1) = p(z1|x1) max
x0

{δ(x0)p(x1|x0)}

z1

x1 (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

G 0.0133 0.0022 0.0044 0.0022 0.0044 0.0133 0.0044 0.0133 0.0044



And for the last observation δ(x2):

z2

x2 (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

G 0.0040 0.0003 0.0007 0.0003 0.0007 0.0020 0.0007 0.0020 0.0003

In this last step we see that state x∗ = (1, 1) is the most probable final state.
By backtracking we see that in the first time step there are three equally probable
states: (1,2), (2,1) and (3,3). All of them make sense as they are red squares (first
observation) and we don’t have any other information.
In the second step there are again three equally probable states: (1,1), (2,3) and
(3,2). The paths that lead to these states are:

(1,2) , (1,1)
(2,1) , (1,1)
(3,3) , (2,3)
(3,3) , (3,2)

In the last step state (1,1) is most probable because there are 2 paths that can lead
to it. In contrast there is one path that leads to (2,3) or (3,2) so the probability for
each is exactly half of the probability for (1,1). Therefore the most likely path is

(1,2) , (1,1), (1,1) or (2,1) , (1,1), (1,1)

d) See code

Exercise 2: K-Means and EM

See code

Exercise 3: Back Propagation

• Derivative of the activation function f(·) at the corresponding neuron should be
derived. During back propagation, the error should be back-propagated with f ′ for
the corresponding neuron.

•
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Exercise 4: Convolutional Layer Arithmetic

In general, blobs have the canonical shape N × C ×H ×W .

a) The input blob will have the shape 10× 3× 80× 120.



b) In order to find the output blob shape, one has to consider what happens during
a convolution. If there is a non-zero padding, zeros will get virtually added at the
boundary of the input. So the input size increases by 2× p where p is the padding
size. Every time a kernel gets multiplied with pixels, one number for the activation
map is computed. Thus, the number of times that you can ”apply” a kernel along
the height/width of the input will give you the dimensions of the output. Putting
all this together will give you the following formula:

x̃ =
x+ 2× p− k

s
+ 1

where x̃ is the output height or width, respectively. k is the kernel height or width
and s is the stride. That means that the output blob will have the shape
10× 64× 40× 62


