TU MÜnchen
FAKULTÄT FÜR Informatik
PD Dr. Rudolph Triebel
J. Chiotellis, C. Hazirbas, P. Haeusser

Machine Learning for Robotics and Computer Vision Winter term 2015
 Solution Sheet 4
 Topic: Boosting and Kernels
 November 23th, 2015

Exercise 1: Adaboost

See code

Exercise 2: Kernels

Remember that for a function to be a valid kernel, it must correspond to a scalar product in some (perhaps infinite dimensional) feature space. First let us write down the kernel constructing rules that we will use: Let K_{1} and K_{2} be kernels on $\mathcal{X} \subseteq \mathbb{R}^{n}$ and K_{3} be kernel on $f: X \rightarrow \mathbb{R}^{m}$.

Rules

1. $K(x, y)=K_{1}(x, y)+K_{2}(x, y)$
2. $K(x, y)=c K_{1}(x, y) \quad, c>0$
3. $K(x, y)=K_{1}(x, y) K_{2}(x, y)$
4. $K(x, y)=K_{3}(f(x), f(y))$
5. $K(x, y)=x^{T} B y \quad$, for B square, symmetric and positive semi-definite
6. $K(x, y)=c \quad, c>0$

Proofs

1.

$$
\left.\begin{array}{rl}
K_{1}(x, y)+K_{2}(x, y) & =\phi_{1}(x)^{T} \phi_{1}(y)+\phi_{2}(x)^{T} \phi_{2}(y) \\
& =\left(\phi_{1}(x) \quad \phi_{2}(x)\right)^{T}\left(\phi_{1}(y)\right. \\
& \phi_{2}(y)
\end{array}\right)
$$

with $\phi(x)=\left(\phi_{1}(x) \quad \phi_{2}(x)\right)^{T}$.
2.

$$
\begin{aligned}
c K_{1}(x, y) & =c \phi_{1}(x)^{T} \phi_{1}(y) \\
& =\sqrt{c} \sqrt{c} \phi_{1}(x)^{T} \phi_{1}(y) \\
& =\left(\sqrt{c} \phi_{1}(x)\right)^{T}\left(\sqrt{c} \phi_{1}(y)\right) \\
& =\phi(x)^{T} \phi(y)
\end{aligned}
$$

with $\phi(x)=\left(\frac{\sqrt{c}}{\sqrt{n_{1}}} \phi_{1}(x)_{1}, \ldots, \frac{\sqrt{c}}{\sqrt{n_{1}}} \phi_{1}(x)_{n_{1}}\right)^{T}$
and $\phi_{1}(x) \in \mathbb{R}^{n_{1}}, \phi_{2}(x) \in \mathbb{R}^{n_{2}}, \phi(x) \in \mathbb{R}^{n_{1}+n_{2}}$.
3.

$$
\begin{aligned}
K_{1}(x, y) K_{2}(x, y) & =\phi_{1}(x)^{T} \phi_{1}(y) \phi_{2}(x)^{T} \phi_{2}(y) \\
& =\left(\sum_{i} \phi_{1}(x)_{i} \phi_{1}(y)_{i}\right)\left(\sum_{j} \phi_{2}(x)_{j} \phi_{2}(y)_{j}\right) \\
& =\sum_{i} \sum_{j} \phi_{1}(x)_{i} \phi_{1}(y)_{i} \phi_{2}(x)_{j} \phi_{2}(y)_{j} \\
& =\sum_{i} \sum_{j} \phi_{1}(x)_{i} \phi_{2}(x)_{j} \phi_{1}(y)_{i} \phi_{2}(y)_{j} \\
& =\sum_{k} \phi_{k}(x) \phi_{k}(y) \\
& =\phi(x)^{T} \phi(y)
\end{aligned}
$$

with $\phi(x)=\left(\begin{array}{c}\phi_{1}(x)_{1} \phi_{2}(x)_{1} \\ \vdots \\ \phi_{1}(x)_{1} \phi_{2}(x)_{n_{2}} \\ \phi_{1}(x)_{2} \phi_{2}(x)_{1} \\ \vdots \\ \phi_{1}(x)_{n_{1}} \phi_{2}(x)_{n_{2}}\end{array}\right) \in \mathbb{R}^{n_{1} \cdot n_{2}}$.
4. Since K_{3} is a valid kernel in \mathbb{R}^{m} there is a feature space ψ for which it holds

$$
K_{3}(f(x), f(y))=\psi(f(x))^{T} \psi(f(y))
$$

Therefore it is also a valid kernel in \mathbb{R}^{n} with with $\phi(x)=\psi(f(x))$.
5. Since B is symmetric and positive definite we can use its Cholesky decomposition:

$$
x^{T} B y=x^{T} L L^{T} y=\left(L^{T} x\right)^{T}\left(L^{T} y\right)=\phi(x)^{T} \phi(y)
$$

with $\phi(x)=L^{T} x$.
6. c is a kernel (Rule 5 with $B=I$ and Rule 4 with $\phi(x)=\phi(y)=\left(\frac{\sqrt{c}}{\sqrt{m}}, \ldots, \frac{\sqrt{c}}{\sqrt{m}}\right)^{T}$ if $\phi(x) \in \mathbb{R}^{m}$.

Gaussian Kernel First let us prove that the exponential of a kernel is also a kernel. Using the Taylor expansion of the exponential, we have:

$$
\exp \left(K_{1}(x, y)\right)=1+\sum_{n=1}^{\infty} \frac{1}{n!} K_{1}(x, y)^{n}
$$

Using the rules we defined, we see that

- $K_{1}(x, y)^{n}$ is a kernel (iteratively Rule 3)
- $\left(\frac{1}{n!}\right) K_{1}(x, y)^{n}$ is a kernel (Rule 2)
- $\sum_{n=1}^{\infty}\left(\frac{1}{n!}\right) K_{1}(x, y)^{n}$ is a kernel (iteratively Rule 1)
- 1 is a kernel (Rule 6)
- the whole expression is a kernel because of Rule 1 .

Now we can rewrite the Gaussian kernel as follows:

$$
\begin{aligned}
\exp \left(-\frac{|x-y|^{2}}{2 \sigma^{2}}\right) & =\exp \left(-\frac{(x-y)^{T}(x-y)}{2 \sigma^{2}}\right)=\exp \left(-\frac{x^{T} x-2 x^{T} y+y^{T} y}{2 \sigma^{2}}\right) \\
& =\exp \left(-\frac{x^{T} x}{2 \sigma^{2}}\right) \exp \left(-\frac{y^{T} y}{2 \sigma^{2}}\right) \exp \left(\frac{x^{T} y}{2 \sigma^{2}}\right)
\end{aligned}
$$

The expression $\frac{x^{T} y}{2 \sigma^{2}}$ is a kernel because of Rule $5(B=I)$ and Rule $2\left(c=\frac{1}{2 \sigma^{2}}\right)$ and as we showed its exponential is also a kernel.

The remaining expression is a kernel because of Rule 4 with $\phi(x)=\left(\frac{\exp \left(-\frac{x^{T} x}{2 \sigma^{2}}\right)}{\sqrt{m}}, \ldots, \frac{\exp \left(-\frac{x^{T} x}{2 \sigma^{2}}\right)}{\sqrt{m}}\right)$ and $\phi(y)=\left(\frac{\exp \left(-\frac{y^{T} y}{2 \sigma^{2}}\right)}{\sqrt{m}}, \ldots, \frac{\exp \left(-\frac{y^{T} y}{2 \sigma^{2}}\right)}{\sqrt{m}}\right)$.

Polynomial Kernel Here we talk about the polynomial kernel

$$
K(x, y)=\left(x^{T} y+c\right)^{d} \quad, c>0, d \in \mathbb{N}
$$

Using the rules we defined we easily see that:

- $x^{T} y$ is a kernel (Rule 5 with $B=I$)
- c is a kernel (Rule 6)
- $x^{T} y+c$ is a kernel (Rule 1)
- $\left(x^{T} y+c\right)^{d}$ is a kernel (Rule 3)

